The activity of bilirubin oxidase toward bilirubin was studied in a liquid/solid two-phase low-water organic system using a simple spectrophotometric assay to follow the reaction. The enzyme was lyophilized from aqueous solution before being suspended in the organic solvent reaction medium. The activity was significantly influenced by the properties of the aqueous medium from which the enzyme was lyophilized, specifically its pH, and the quantity and nature of the buffering species. Analyses of these effect showed that the role of buffering species in such systems went beyond their effect in fixing the protonation state of the enzyme. The activity was also influenced by the quantity of water added to the organic solvent reaction medium. The reaction was shown to follow Michaelis-Menten Kinetics, and K(m) and k(cat) were determined. The liquid/solid two-phase system studied was extensively compared to a previously studied water-in-oil microemulsion system.
Exosomes have previously been isolated from Chinese hamster ovary (CHO) cells and their anti-apoptotic properties reported. However, to further facilitate the study of CHO cell derived exosomes and allow their comparison across studies, it is necessary to characterise and define such exosomes using at least three criteria that can act as a reference for the generation of CHO cell produced exosomes. Here we report on the isolation of exosomes from CHO cells, an industrially relevant and widely used cell host for biopharmaceutical protein production, during the exponential and stationary phase of growth during batch culture using a Total Exosome Isolation (TEI) method. The resulting vesicles were characterized and visualized using a diverse range of techniques including Dynamic Light Scattering (DLS), Zeta potential, Electron Microscopy and immunoblotting, and their protein and RNA content determined. We also generated the lipid fingerprint of isolated exosomes using MALDI-ToF mass spectroscopy. We confirmed the presence of nano sized extracellular vesicles from CHO cells and their subsequent characterization revealed details of their size, homogeneity, surface charge, protein and RNA content. The lipid content of exosomes was also found to differ between exosomes isolated on different days of batch culture. This analysis provides a profile and characterisation of CHO cell exosomes to aid future studies on exosomes from CHO cells and improving the manufacturing of exosomes for biotherapeutic application.
The storage stability of bilirubin oxidase was studied in water-in-oil CTAB microemulsions with a chloroformrich continuous organic phase. The kinetics of the inactivation process were best described by a double exponential equation. Approximately half of enzymatic activity was lost during a "fast" phase with a half life of ca. 50 min, whereas the remaining activity was lost much more slowly (half life ca. 1000 min). Rates of inactivation were not affected significantly by variation of either solvent composition or concentration of water droplets, but inactivation was more rapid when droplet size was very small. Steady-state enzyme kinetics were studied at various stages in the inactivation process, and it was shown that inactivation occurred without change in the K(m) of the enzyme for bilirubin. Stability was also studied in a liquid/solid two-phase system; it was found that the inactivation process in this system; it was found that the inactivation process in this system was best described by a single exponential term. The rate was similar to the "fast" phase rate observed in the water-in-oil microemulsion system. Inactivation of the enzyme slow. Addition of the surfactant CTAB to the aqueous environment increased the rate of inactivation to levels comparable to those of the "slow" phase observed in water-in-oil microemulsions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.