People getting involved with modern agriculture should become familiar with and able to exploit the plethora of cutting-edge technologies that have recently appeared in this area. The contribution of the educational robotics in demystifying new scientific fields for K-12 students is remarkable, but things become more challenging when trying to discover efficient practices for higher education. Indeed, there is an apparent need for pilot examples facilitating students’ professional skills acquisition and thus matching the potential of the actual systems used in the modern agricultural premises. In this regard, this work discuses laboratory experiences while implementing an automatic airflow control system of convincing size and role capable for remote configuration and monitoring. This non-conventional robotic example exploits retired electromechanical equipment, from an old farm, and revives it using modern widely available microcontrollers, smart phones/tablets, network transceivers, motor drivers, and some cheap and/or custom sensors. The contribution of the corresponding software parts to this transformation is of crucial importance for the success of the whole system. Thankfully, these parts are implemented using easy-to-use programming tools, of open and free nature at most, that are suitable for the pairing credit-card-sized computer systems. The proposed solution is exhibiting modularity and scalability and assists students and future professionals to better understand the role of key elements participating in the digital transformation of the agricultural sector. The whole approach has been evaluated from both technical and educational perspective and delivered interesting results that are also reported.
Due to the dynamic nature of the agricultural industry, educators and their institutions face difficult challenges as they try to keep pace with future demands for knowledge and skilled workers. On the other hand, computational thinking (CT) has drawn increasing attention in the field of science, technology, engineering, and mathematics (STEM) education at present and, as advanced technologies and tools emerge, it is imperative for such innovations to be sustained with knowledge and skill among STEM educators and practitioners. The present case study aims to explore the relation between CT, STEM and agricultural education training (AET) in a Greek vocational training institute (IEK), the Agriculture IEK of Metamorfosis city (IEKMC), which is active in agriculture education. The research methodology is utilized according the positivist philosophical approach through data acquisition employing a questionnaire and the quantitative (statistical) analysis of data collected. The sample consists of IEKMC educators and students selected based on simple random sampling. Based on the participants belief that CT and STEM philosophy add value in the learning process, it focuses on the application of knowledge in the real world (students) and problem solving using new technologies (educators). Educators consider “experiments” as the most significant educational tool for problem solving in teaching practice. Students rate Greek Agriculture Education and Training (GAET) higher than educators. However, the participants evaluate GAET very low due to the lack of new innovative teaching methods being introduced. Finally, there is great interest in the implementation of CT and STEM in the European Union (EU) by students and educators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.