Off-chain protocols (channels) are a promising solution to the scalability and privacy challenges of blockchain systems. Current proposals, however, require synchrony assumptions to preserve the safety of a channel, leaking to an adversary the exact amount of time needed to control the network for a successful attack. In this paper, we introduce Brick, the first off-chain construction that remains secure under network asynchrony and concurrently provides correct incentives. The core idea is to incorporate the conflict resolution process within the off-chain channel by introducing a rational watchtower committee. Hence, if a party wants to close a channel unilaterally, it can only get the committee's approval for the last valid state. Brick provides sub-second latency because it does not employ heavy-weight consensus. Instead, Brick uses consistent broadcast to announce updates and close the channel, a light-weight abstraction that is powerful enough to preserve safety and liveness to honest parties. Furthermore, we consider the permissioned model of blockchains, where the additional property of auditability might be desired for regulatory purposes. We introduce Brick+, an off-chain construction that provides auditability on top of Brick without conflicting with its privacy guarantees. We formally define the properties our state channel construction should fulfill, and prove that both Brick and Brick+ satisfy them. We also design incentives for Brick such that honest and rational behavior aligns for both the committee and the parties of a channel.1 This censoring ability is encompassed by the chain-quality property [19] of blockchain systems which is rightly bound to the synchrony of the network. 2 Liveness states that a transaction will be eventually included on-chain as long as it is provided to all honest parties for a long enough time period [19].
Leader-based consensus algorithms are vulnerable to liveness and performance downgrade attacks. We explore the possibility of replacing leader election in Multi-Paxos with random exponential backoff (REB), a simpler approach that requires minimum modifications to the two phase Synod Paxos and achieves better resiliency under attacks.We propose Baxos, a new resilient consensus protocol that leverages a random exponential backoff scheme as a replacement for leader election in consensus algorithms. Our backoff scheme addresses the common challenges of random exponential backoff such as scalability and robustness to changing wide area latency. We extensively evaluate Baxos to illustrate its performance and robustness against two liveness and performance downgrade attacks using an implementation running on Amazon EC2 in a wide area network and a combination of a micro benchmark and YCSB-A workload on Redis. Our results show that Baxos offers more robustness to liveness and performance downgrade attacks than leader-based consensus protocols. Baxos outperforms Multi-Paxos and Raft up to 185% in throughput under liveness and performance downgrade attacks under worst case contention scenarios where each replica proposes requests concurrently while only incurring a 7% reduction on the maximum throughput in the synchronous attack-free scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.