Quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes bearing quaternary ammonium groups of different alkyl chain lengths (ACLs) were prepared and assessed as biocidal coatings. For the synthesis of the antimicrobial brushes, first well-defined PDMAEMA chains were grown by surface-initiated atom transfer radical polymerization on glass and silicon substrates. Next, the tertiary amine groups of the polymer brushes were modified via a quaternization reaction, using alkyl halides, to obtain the cationic polymers. The polymer films were characterized by Fourier-transform infrared spectroscopy, ellipsometry, atomic force microscopy, and water contact angle measurements. The effect of the ACL of the quaternary ammonium groups on the physicochemical properties of the films as well as the contact killing efficiency of the surfaces against representative Gram-positive and Gram-negative bacteria was investigated. A hydrophilic to hydrophobic transition of the surfaces and a significant decrease of the degree of quaternization of the DMAEMA moieties was found upon increasing the ACL of the quaternization agent above six carbon atoms, allowing the wettability, the thickness, and the pH-response of the brushes to be tuned via a facile postpolymerization, quaternization reaction. At the same time, antimicrobial tests revealed that the hydrophilic polymer brushes exhibited enhanced bactericidal activity against Escherichia coli and Bacillus cereus, whereas the hydrophobic surfaces showed a significant deterioration of the in vitro bactericidal performance. Our results elucidate the antimicrobial action of quaternized polymer brushes, dictating the appropriate choice of the ACL of the quaternization agent for the development of coatings that effectively inhibit biofilm formation on surfaces.
Well-defined poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) has been modified at low degrees of quaternization of the tertiary amine groups using alkyl halides with long alkyl chains as the quaternization agents. The resulting PDMAEMA-co-PQDMAEMA copolymers were studied in aqueous solution using potentiometric titrations, turbidimetry, surface tensiometry, dynamic light scattering and zeta potential measurements. An increase of the hydrophilicity of the precursor polymer, leading to an increase or even elimination of the lower critical solution temperature (LCST) for the quaternized copolymers was found; this extended the temperature range of the stable polymer solution. At the same time, it was shown that the hydrophobic character of the polymer increases upon quaternization, leading to higher surface activity compared to the precursor PDMAEMA homopolymer, and, thus, to more effective polymeric surfactants. This contradiction in the copolymer behavior was attributed to the interplay between the polymer self-assembly in the aqueous medium and the polymer adsorption at the air/water interface, which dominate the cloud point and the surface properties, respectively.
Thymyl-methacrylate functionalized, hybrid 3D scaffolds, fabricated by multi-photon lithography, exhibit excellent biocompatibility and antimicrobial action for bone and dental tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.