Simple SummaryVeterinarians have an ethical obligation to provide good care for the animals that they see in practice. However, at times, there may be conflicts between the interests of animal caregivers or owners, the interests of veterinarians and the interests of animals. We provide an overview of why and how veterinary ethics is taught to veterinary students, as well as providing a context for thinking about veterinary ethical challenges and animal welfare issues. We argue that veterinarians are ethically obliged to speak up and ask questions when problems arise or are seen and provide a series of clinical case examples in which there is scope for veterinarians to improve animal welfare by ‘speaking up’.AbstractAlthough expectations for appropriate animal care are present in most developed countries, significant animal welfare challenges continue to be seen on a regular basis in all areas of veterinary practice. Veterinary ethics is a relatively new area of educational focus but is thought to be critically important in helping veterinarians formulate their approach to clinical case management and in determining the overall acceptability of practices towards animals. An overview is provided of how veterinary ethics are taught and how common ethical frameworks and approaches are employed—along with legislation, guidelines and codes of professional conduct—to address animal welfare issues. Insufficiently mature ethical reasoning or a lack of veterinary ethical sensitivity can lead to an inability or difficulty in speaking up about concerns with clients and ultimately, failure in their duty of care to animals, leading to poor animal welfare outcomes. A number of examples are provided to illustrate this point. Ensuring that robust ethical frameworks are employed will ultimately help veterinarians to “speak up” to address animal welfare concerns and prevent future harms.
Animals’ facial expressions are widely used as a readout for emotion. Scientific interest in the facial expressions of laboratory animals has centered primarily on negative experiences, such as pain, experienced as a result of scientific research procedures. Recent attempts to standardize evaluation of facial expressions associated with pain in laboratory animals has culminated in the development of “grimace scales”. The prevention or relief of pain in laboratory animals is a fundamental requirement for in vivo research to satisfy community expectations. However, to date it appears that the grimace scales have not seen widespread implementation as clinical pain assessment techniques in biomedical research. In this review, we discuss some of the barriers to implementation of the scales in clinical laboratory animal medicine, progress made in automation of collection, and suggest avenues for future research.
Background There is a critical need to develop appropriate on-farm euthanasia methods for poultry species. Euthanasia methods should affect the brain first causing insensibility, followed by cardiorespiratory arrest. Neck or cervical dislocation methods, either manual (CD) or mechanical (MCD), are reported to cause a prolonged time to loss of sensibility and death with inconsistent results upon application, especially MCD methods. However, there is limited information on cervical dislocation in turkeys. The overall objective of this study was to assess the welfare implications of CD and a newly developed MCD device for euthanasia of cull turkeys in comparison with intravenous (IV) pentobarbital sodium (1 mL/4.5 kg), the gold standard euthanasia method. Time to death using electroencephalographic (EEG) and behavioural responses were monitored in eight and eighteen week-old turkeys for five minutes after each euthanasia method application. Spectral analyses of EEG responses and onset of isoelectric EEGs were compared to baseline EEG recordings of birds under anesthesia and behavioural responses were studied among euthanasia treatments. A significant decrease in brain activity frequencies analysis and isoelectric EEG were recorded as time of brain death. Results All turkeys euthanized with IV pentobarbital sodium presented a rapid and irreversible decrease in the EEG activity at approximately 30s post-injection with minimal behavioural responses. CD and MCD methods caused EEG responses consistent with brain death at approximately 120 s and 300 s, respectively. Additionally, isoelectric EEGs resulted in all pentobarbital sodium and CD groups, but only in 54 and 88% of the eight and eighteen week-old turkeys in the MCD groups, respectively. There were few clear patterns of behavioural responses after CD and MCD application. However, cessation of body movement and time to isoelectric EEG after CD application were positively correlated. Conclusions Use of CD and MCD resulted in a prolonged time to death in both age groups of turkeys. MCD application presents a number of welfare risks based on electroencephalographic and behavioural findings. Intravenous pentobarbital sodium induced rapid brain death, but possesses several on-farm limitations. To develop improvements in cervical dislocation methods, further investigations into combined or alternative methods are required to reduce the prolonged time to insensibility and death. Electronic supplementary material The online version of this article (10.1186/s12917-019-1885-x) contains supplementary material, which is available to authorized users.
This study investigated changes in the electroencephalograph (EEG) power spectrum as well as physiological and behavioral responses to on-farm killing via mechanical cervical dislocation (MCD), manual cervical dislocation (CD) or intravenous pentobarbital sodium administration in lightly anesthetized laying hens, to evaluate the welfare impact of each method. A mixed group of 44 white Leghorn and Smoky Joe laying hens (60 weeks-old) were anesthetized with isoflurane in oxygen and maintained at 1.5–2% isoflurane/O2 until the killing method was applied. Birds were randomly assigned to one of three experimental groups on each trial day. The EEG was recorded bilaterally in a four-electrode montage. After recording a 5-min baseline, the killing method was applied and EEGs and other behavioral and physiological responses, including convulsions, gasping, cessation of body movements and feather erection were recorded for 5 min. Changes in EEG frequency bands (alpha, beta, delta, theta), median frequency (F50), 95% spectral edge frequency (F95), and total power (Ptot) were used to assess the quality of the on-farm killing event. Within 15 s after administration of pentobarbital sodium, there were significant decreases in mean frequency bands, increases in mean F50 and F95, and decreases in Ptot, suggesting brain death. In addition, birds presented a shorter latency to cessation of movement after pentobarbital sodium injection compared to MCD and CD (22 vs. 115 s and 136 s, respectively). There were significant increases in F95 and decreases in Ptot at 120 s after application of CD; and a concomitant decrease in the frequency bands at 135 s and isoelectric EEG at 171 ± 15 s. Changes consistent with brain death after MCD included isoelectric EEG at 207 ± 23 s and a significant decreases in some frequency bands at 300 s post-application. No other significant spectrum frequency changes were observed in the MCD group, suggesting brain death likely occurred near the 5-min endpoint. There was no clear association between behavioral, physiological, and EEG responses within CD and MCD treatments. The data demonstrate that pentobarbital sodium induced a rapid death with minimal behavioral and physiological responses regardless of strain of hens. In comparison, use of CD and MCD resulted in a slow onset of brain death in hens.
Industrial food animal production practices are efficient for producing large quantities of milk, meat, and eggs for a growing global population, but often result in the need to alter animals to fit a more restricted environment, as well as creating new animal welfare and health problems related to animal confinement in high densities. These practices and methods have become normalized, to the extent that veterinarians and others embedded in these industries rarely question the ethical challenges associated with raising animals in this fashion. Moral ‘lock-in’ is common with those working in food animal industries, as is the feeling that it is impossible to effect meaningful change. Animal welfare issues associated with the industrialization of food animal production are ‘wicked problems’ that require a multi- and transdisciplinary approach. We argue that veterinarians, as expert animal health and welfare advocates, should be critical stakeholders and leaders in discussions with producers and the food animal sector, to look for innovative solutions and technology that will address current and future global sustainability and food security needs. Solutions will necessarily be different in different countries and regions, but ethical issues associated with industrial food animal production practices are universal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.