Sheared velocity profiles pervade all wind‐turbine applications, thus making it important to understand their effect on the wake. In this study, a single wind turbine is modeled using the actuator‐line method in the incompressible Navier–Stokes equations. The tip vortices are perturbed harmonically, and the growth rate of the response is evaluated under uniform inflow and a linear velocity profile. Whereas previous investigations of this kind were conducted in the rotating frame of reference, this study evaluates the excitation response in the fixed frame of reference, thus necessitating a frequency transformation. It is shown that increasing the shear decreases the spatial growth rate in the upper half of the wake while increasing it in the lower half. When scaled with the local tip vortex parameters, the growth rate along the entire azimuth collapses to a single value for the investigated wavenumbers. We conclude that even though the tip‐vortex breakdown is asymmetric in sheared flow, the scaled growth rates follow the behavior of axisymmetric helical vortices. An excitation amplitude reduction by an order of magnitude extends the linear growth region of the wake by one radius for uniform inflow. In the sheared setup, the linear growth region is extended further in the top half than in the bottom half because of the progressive distortion of the helical tip vortices. An existing model to determine the stable wake length was shown to be in close agreement with the observed numerical results when adjusted for shear.
The hydrodynamic stability of a vortex system behind two in-line wind turbines operating at low tip-speed ratios is investigated using the actuator-line method in conjunction with the spectral-element flow solver Nek5000. To this end, a simplified setup with two identical wind turbine geometries rotating at the same tip-speed ratio is simulated and compared with a single turbine wake. Using the rotating frame of reference, a steady solution is obtained, which serves as a base state to study the growth mechanisms of induced perturbations to the system. It is shown that, already in the steady state, the tip vortices of the two turbines interact with each other, exhibiting the so-called overtaking phenomenon. Hereby, the tip vortices of the upstream turbine overtake those of the downstream turbine repeatedly. By applying targeted harmonic excitations at the upstream turbine’s blade tips a variety of modes are excited and grow with downstream distance. Dynamic mode decomposition of this perturbed flow field showed that the unstable out-of-phase mode is dominant, both with and without the presence of the second turbine. The perturbations of the upstream turbine’s helical vortex system led to the destabilization of the tip vortices shed by the downstream turbine. Two distinct mechanisms were observed: for certain frequencies the downstream turbine’s vortices oscillate in phase with the vortex system of the upstream turbine while for other frequencies a clear out-of-phase behaviour is observed. Further, short-wave instabilities were shown to grow in the numerical simulations, similar to existing experimental studies [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.