The herpesvirus saimiri (HVS) genome has the capacity to incorporate large amounts of heterologous DNA and can be maintained episomally in many different human cell types. To evaluate the efficacy of HVS-mediated gene transfer into human hemopoietic cells, we investigated the ability of an HVS-based construct, carrying the enhanced green fluorescent protein (EGFP) and neomycin resistance genes, to transduce a variety of human hemopoietic cell lines and primary CD34 ϩ cells. As measured by flow cytometry, the numbers of EGFP ϩ cells at 2 days postinfection differed between various cell types ranging, from 1.3% for KG1 cells to 56.8% for THP-1 cells. In addition, the expression of EGFP in Jurkat cells was retained at Ͼ95% per round of cell division over a period of 6 weeks (comparable with Epstein-Barr virus-derived gene therapy systems). Although the virus was not specifically disabled, no lytic viral mRNAs could be detected in transduced Jurkat cells, and infectious virus could not be detected by sensitive virus recovery assay. We also describe a simple centrifugation method that increases the efficiency of transduction by Ͼ100% in some cases and may be generally applicable to other herpesvirus-based vectors for ex vivo gene delivery. Using this technique, we were able to demonstrate a tropism for CD34 ϩ /CD14 ϩ cells, transducing 30% of the population. These cells are known to give rise to dendritic cells (the most potent of the antigen-presenting cells), suggesting that the vector could be used to deliver DNA sequences encoding tumor antigens for cancer immunotherapy.
We have evaluated the ability of new herpesvirus saimiri (HVS)-based vectors to deliver a marker gene green fluorescent protein (GFP) into human bone marrow (BM) stromal cells and their progenitors. Stromal cells expanded from adherent layers of long-term BM cultures (LTC) were susceptible to HVS-based infection in a dose-dependent manner, and the efficiency of 94.8 +/- 2.0% was achieved using single exposure with HVS/EGFP vector at multiplicity of infection (moi) of approximately 50. Colony-forming unit-fibroblast (CFU-F) assay established the ability of HVS-based vectors to infect progenitors for bone marrow stroma fibroblasts and transfer the marker gene over multiple cell divisions in the absence of selective pressure. HVS was not toxic for stromal cells and progenitors and no viral replication was detected upon growth of modified stroma. On the basis these data, we believe that HVS-based constructs can offer a new opportunity for selective gene delivery into bone marrow stromal cells and progenitors. The ability of HVS to infect nondividing cells can be considered advantageous in the development of both ex vivo and in vivo strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.