The molecular mechanism responsible for the regulation of the mitochondrial membrane proton conductance (G) is not clearly understood. This study investigates the role of the transmembrane potential (DeltaPsim) using planar membranes, reconstituted with purified uncoupling proteins (UCP1 and UCP2) and/or unsaturated FA. We show that high DeltaPsim (similar to DeltaPsim in mitochondrial State IV) significantly activates the protonophoric function of UCPs in the presence of FA. The proton conductance increases nonlinearly with DeltaPsim. The application of DeltaPsim up to 220 mV leads to the overriding of the protein inhibition at a constant ATP concentration. Both, the exposure of FA-containing bilayers to high DeltaPsim and the increase of FA membrane concentration bring about the significant exponential Gm increase, implying the contribution of FA in proton leak. Quantitative analysis of the energy barrier for the transport of FA anions in the presence and absence of protein suggests that FA- remain exposed to membrane lipids while crossing the UCP-containing membrane. We believe this study shows that UCPs and FA decrease DeltaPsim more effectively if it is sufficiently high. Thus, the tight regulation of proton conductance and/or FA concentration by DeltaPsim may be key in mitochondrial respiration and metabolism.
Photosensitized efficacy of tetrasulfonated phthalocyanines of zinc, aluminum and nickel (ZnPcS(4), AlPcS(4) and NiPcS(4), respectively) as studied by gramicidin channel (gA) photoinactivation was compared with adsorption of the dyes on the surface of a bilayer lipid membrane as measured by the inner field compensation method. The adsorption of the negatively charged phthalocyanines on diphytanoylphosphatidylcholine (DPhPC) membranes led to formation of a negative boundary potential difference between the membrane/water interfaces. Good correlation was shown between the photodynamic activity and the membrane binding of the three metallophthalocyanines. ZnPcS(4) appeared to be the most potent of these photosensitizers, while NiPcS(4) was completely ineffective. All of these phthalocyanines displayed no binding and negligible gA photoinactivation with membranes formed of glycerol monooleate (GMO), whereas Rose Bengal exhibited significant binding and photodynamic efficacy with GMO membranes. Gramicidin photoinactivation in the presence of AlPcS(4), being insensitive to the ionic strength of the bathing solution, was inhibited by fluoride and attenuated by phosphate ions. A blue shift of the fluorescence peak position of ZnPcS(4) dissolved in ethanol was elicited by phosphate, similarly to fluoride, which was indicative of the coordination interaction of these ions with the central metal atom of the phthalocyanine macrocycle. This interaction was enhanced in the medium modeling the water-membrane interface. The results obtained imply that binding of tetrasulfonated metallophthalocyanines to phospholipid membranes is determined primarily by metal-phosphate coordination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.