Ischemia-reperfusion injury (IRI) causes up to 10% of early liver failures in humans and can lead to a higher incidence of acute and chronic rejection. So far, very few studies have investigated wide gene expression profiles associated with the IRI process. The discovery of novel genes activated by IRI might lead to the identification of potential target genes for the prevention or treatment of the injury. In our study, we compared gene expression levels in reperfused livers (RL group) vs. the basal values before retrieval from the donor (basal liver [BL] group) using oligonucleotide array technology. We examined 10 biopsies from 5 livers, analyzing approximately 33,000 genes represented on the Affymetrix HG-U133APlus 2.0 oligonucleotide arrays (Affymetrix, Santa Clara, CA). About 13,000 individual genes were considered expressed in at least 1 condition. A total of 795 genes whose expression is significantly modified by ischemia-reperfusion in human liver transplantation were identified in this study. Some of them are likely to be completely activated by IRI, as they are not expressed in basal livers. The supervised gene expression analysis revealed that at least 12% of the genes involved in the apoptotic process, 12.5% of the genes involved in inflammatory processes, and 22.5% of the genes encoding for heat shock proteins are differentially expressed in RL samples vs. BL samples. Furthermore, IRI induces the upregulation of some genes' coding for adhesion molecules and integrins. In conclusion, we have identified a relevant amount of early genes regulated in the human liver after 7-9 hours of cold ischemia and 2 hours from reperfusion, many of them not having been described before in this process. Their analyses may help us to better understand the pathophysiology of IRI and to characterize potential target genes for the prevention or treatment of the liver injury in order to increase the number of patients that successfully undergo transplantation. Liver Transpl 13:99-113, 2007. © Orthotopic liver transplantation has become an effective therapeutic approach for end-stage liver diseases. Advances in surgical procedures and immunosuppression protocols have considerably improved patient survival after liver transplantation. However, ischemiareperfusion injury (IRI), an antigen-independent component of the insult to the liver, represents a major problem affecting the outcome of liver transplantation.IRI causes up to 10% of early liver failures and can lead to a higher incidence of acute and chronic rejection. Liver IRI is mediated by several processes that lead to hepatocellular damage, which is triggered when the Abbreviations: IRI, ischemia-reperfusion injury; HO-1, heme oxygenase-1; BL, basal liver; RL, reperfused liver; GO, Gene Ontology; PCR, polymerase chain reaction; IL, interleukin; CCL, cystein cistein ligand; HSP, heat shock protein.
Disintegrins, low molecular weight RGD-containing polypeptides isolated from snake venoms, have seen use as integrin antagonists in the field of tumor biology and angiogenesis. In this study, we investigated the molecular mechanism by which the disintegrin echistatin affects cell adhesion and signaling resulting in an apoptotic response in the GD25 cell system. Wild-type GD25 cells, which lack expression of the beta(1) family of integrin, and stable transfectants expressing the A isoform of beta(1) integrin subunit were used. Nanomolar concentrations of echistatin detached fibronectin- and vitronectin-adherent GD25 cells from immobilized substratum. However, prior to inducing detachment of adherent cells, echistatin caused apoptosis as measured by caspase-3 activation. Either cell detachment or apoptotic response induced by echistatin were more pronounced on fibronectin-adherent GD25 cells than on vitronectin-adherent ones. GD25 cell exposure to echistatin caused a reduction of tyrosine phosphorylation levels of pp125(FAK), whereas it didn't affect either Shc tyrosine phosphorylation levels or Shc-Grb2 functional association. The down-regulation of pp125(FAK) preceded apoptosis and cell detachment induced by echistatin. Our results indicate that pp125(FAK) and not Shc pathway is involved in echistatin-induced apoptotic response in the GD25 cell system.
In this study, three structurally distinct disintegrins (flavoridin, echistatin, kistrin) were used as molecular probes to further characterize the molecular mechanisms underlying Yersinia enterocolitica infection of host cells. The activity of the three disintegrins on Y. enterocolitica uptake into fibronectin-adherent HeLa cells was evaluated at disintegrin doses which were non-cytotoxic and unable to induce cell detachment. Flavoridin resulted to be the most effective in inhibiting bacterial entry into host cells; echistatin was almost 50% less effective than flavoridin, whereas kistrin was definitely inactive. Our results suggest that alpha(5)beta(1) integrin receptor, which binds flavoridin with higher affinity than the other two disintegrins, plays a major role in Y. enterocolitica uptake into HeLa cells. Furthermore, flavoridin binding to this integrin prevented the disruption of the functional complex FAK-Cas, which occurs in the Y. enterocolitica uptake process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.