Predicting which patients are more likely to be readmitted to a hospital within 30 days after discharge is a valuable piece of information in clinical decision-making. Building a successful readmission risk classifier based on the content of Electronic Health Records (EHRs) has proved, however, to be a challenging task. Previously explored features include mainly structured information, such as sociodemographic data, comorbidity codes and physiological variables. In this paper we assess incorporating additional clinically interpretable NLP-based features such as topic extraction and clinical sentiment analysis to predict early readmission risk in psychiatry patients.
This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings-words from one language that are introduced into another without orthographic adaptation-and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformerbased embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model. 1 https://github.com/lirondos/coalas Set Tokens ENG OTHER Unique Training 231
This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings-words from one language that are introduced into another without orthographic adaptation-and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformerbased embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model.
Predicting which patients are more likely to be readmitted to a hospital within 30 days after discharge is a valuable piece of information in clinical decision-making. Building a successful readmission risk classifier based on the content of Electronic Health Records (EHRs) has proved, however, to be a challenging task. Previously explored features include mainly structured information, such as sociodemographic data, comorbidity codes and physiological variables. In this paper we assess incorporating additional clinically interpretable NLP-based features such as topic extraction and clinical sentiment analysis to predict early readmission risk in psychiatry patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.