Ferritin, an iron storage protein, is a sensitive clinical biomarker for iron metabolic disorders. It is mainly accumulated in the liver hepatocytes and is present in human plasma at trace levels (picomolar or nanograms per milliliter). Therefore, highly sensitive analytical methods are required to perform ferritin quantification in plasma with high precision and accuracy. For this purpose, we present a mass spectrometry-based analytical strategy (inductively coupled plasma-mass spectrometry, ICP-MS) combined with antibody labeling in a sandwich assay format for ferritin determination. The developed methodology involves two ferritin monoclonal antibodies, one of them biotinylated and the other one labeled with a ruthenium chelate [Ru(bpy)3](2+). The complex formed in solution between ferritin and the two antibodies is then captured using streptavidin-coated magnetic microparticles and directly introduced into ICP-MS for Ru monitoring. Since the Ru complex also allows one to obtain electrogenerated chemiluminescence (ECL), the combination of both sets of data (ICP-MS and ECL) will permit the establishment of the ferritin:Ru stoichiometry. This serves as a basis for further quantification studies using flow injection analysis with isotopically enriched (99)Ru as a carrier with ICP-MS detection. Such strategy permits absolute ferritin determination at a picomolar level with good precision (below 5%) and accuracy (85-109% recovery in the existing ferritin reference material, NIBSC code 94/572). Furthermore, the development of a new strategy to address ferritin:iron-ferritin ratios by ICP-MS opens the door also to address the potential of such ratios as a new clinical biomarker for Fe metabolic disorders.
Iron is an essential element for cell growth and division. Recent experiments have linked a deregulation of iron's metabolism with breast cancer progression, aggressiveness and recurrence. In fact, it is conceived that chronic failure in the redox balance due to the presence of a high intracellular concentration of this metal has the potential to modulate specific signaling networks associated with cancer malignancy. Thus, this work has been focused on the comparative evaluation of part of the Fe metallome in two breast cancer cell lines of different malignancies: MCF-7 and MDA-MB-231. Evaluation of the total cytosolic iron content as well as the ultrafiltrable iron content has been conducted using inductively coupled plasma mass spectrometry (ICP-MS) as a Fe selective detector. The obtained results revealed a significantly higher total Fe concentration in the less malignant phenotype. Additionally, Fe-fractionation experiments, conducted by coupling size exclusion chromatography (SEC) to ICP-MS showed a similar Fe distribution (speciation) in both cell phenotypes. However, further specific ferritin measurement using immunochemical based ICP-MS assays showed important differences regarding the total protein content among cell lines and, most importantly, significant differences in the Fe-content of the ferritin molecules between cell lines. This finding points out an iron-storage independent function also associated with ferritin in the most malignant phenotype of the evaluated breast cancer cells that stresses the interest in this molecule as a cancer biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.