The role of nerve growth factor (NGF), a potent mediator acting in the development and differentiation of both neuronal and immune cells, was examined in a mouse model of allergic asthma. NGF-positive cells were detected in the inflammatory infiltrate of the lung and enhanced levels of NGF were detected in serum and broncho-alveolar lavage fluids. Mononuclear cells in inflamed airway mucosa as well as broncho-alveolar macrophages were identified as one source of NGF production. Splenic mononuclear cells from allergen-sensitized mice produced NGF in response to allergen. They responded to exogenously added NGF with a dose-dependent increase in IL-4 and IL-5 production and augmented IgE and IgG1 synthesis. In contrast, IFN-gamma and IgG2alpha levels remained unaffected. The effects were NGF specific, since they could be blocked by an anti-NGF-antibody. Nasal application of anti-NGF to allergen-sensitized mice significantly reduced IL-4 and prevented development of airway hyperreactivity. These results show that allergic airway inflammation is accompanied by enhanced local NGF production that acts as an amplifier for Th2 effector functions and plays an important role in the development of airway hyperreactivity. Therefore it is suggested that NGF may serve as a link between the immune and nerve system.
Maintaining posture requires tight regulation of the position and orientation of numerous spinal components. Yet, surprisingly little is known about this regulatory mechanism, whose failure may result in spinal deformity as in adolescent idiopathic scoliosis. Here, we use genetic mouse models to demonstrate the involvement of proprioception in regulating spine alignment. Null mutants for Runx3 transcription factor, which lack TrkC neurons connecting between proprioceptive mechanoreceptors and spinal cord, developed peripubertal scoliosis not preceded by vertebral dysplasia or muscle asymmetry. Deletion of Runx3 in the peripheral nervous system or specifically in peripheral sensory neurons, or of enhancer elements driving Runx3 expression in proprioceptive neurons, induced a similar phenotype. Egr3 knockout mice, lacking muscle spindles, but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types may be required for this regulatory mechanism. These findings uncover a central role for the proprioceptive system in maintaining spinal alignment.
Astrocytes express increased levels of neurotrophic factors in response to pathological conditions in the CNS such as injury and inflammation. We have examined the effects of lipopolysaccharide (LPS) and inflammatory cytokines on the expression of GDNF by mouse astrocytes and by C6 glial cells. LPS and tumor necrosis factor-alpha (TNF-alpha) induced an increase in level of glial-derived neurotrophic factor (GDNF) mRNA in both cell types. Similarly, the synthesis of GDNF protein was increased by both treatments. Interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma) induced similar effects on GDNF production, whereas IL-2 and IL-6 had no significant effects. These results indicate that the expression of GDNF in astrocytes is regulated by inflammatory stimuli and therefore may provide neurotrophic support to injured neurons in inflammatory conditions in the CNS.
Caspase-8 is frequently deficient in several kinds of human tumors, suggesting that certain effects of this enzyme restrict tumor development. To examine the nature of the cellular function whose regulation by caspase-8 contributes to its antitumor effect, we assessed the impact of caspase-8 deficiency on cell transformation in vitro. Caspase-8-deficient mouse embryonic fibroblasts immortalized with the SV40 T antigen did not survive when cultured in soft agar, and were nontumorogenic in nude mice. However, the rate of transformation of these cells during their continuous growth in culture, as reflected in the observed emergence of cells that do grow in soft agar and are able to form tumors in nude mice, was far higher than that of cells expressing caspase-8. These findings indicate that caspase-8 deficiency can contribute to cancer development in a way that does not depend on the enzyme's participation in killing of the tumor cells by host immune cytotoxic mechanisms, or on its involvement in the cell-death process triggered upon detachment of the cells from their substrate, but rather concerns cell-autonomous mechanisms that affect the rate of cell transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.