Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed-in contrast to viable parasites-that apoptotic-like parasites enter an LC3 C , autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4 C T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferationreducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells´autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.
Leishmania pathogenesis is primarily studied using the disease-inducing promastigote stage of Leishmania major. Despite many efforts, all attempts so far have failed to culture the disease-relevant multiplying amastigote stage of L. major. Here, we established a stably growing axenic L. major amastigote culture system that was characterized genetically, morphologically, and by stage-specific DsRed protein expression. We found parasite stage-specific disease development in resistant C57BL/6 mice. Human neutrophils, as first host cells for promastigotes, do not take up amastigotes. In human macrophages, we observed an amastigote-specific complement receptor 3-mediated, endocytotic entry mechanism, whereas promastigotes are taken up by complement receptor 1-mediated phagocytosis. Promastigote infection of macrophages induced the inflammatory mediators TNF, CCL3, and CCL4, whereas amastigote infection was silent and resulted in significantly increased parasite numbers: from 7.1 ± 1.4 (after 3 h) to 20.1 ± 7.9 parasites/cell (after 96 h). Our study identifies Leishmania stage-specific disease development, host cell preference, entry mechanism, and immune evasion. Since the amastigote stage is the disease-propagating form found in the infected mammalian host, the newly developed L. major axenic cultures will serve as an important tool in better understanding the amastigote-driven immune response in leishmaniasis.
In cutaneous Leishmaniasis the parasitic control in human host macrophages is still poorly understood. We found an increased expression of the human cathelicidin CAMP in skin lesions of Ethiopian patients with cutaneous leishmaniasis. Vitamin D driven, Cathelicidin-type antimicrobial peptides (CAMP) play an important role in the elimination of invading microorganisms. Recombinant cathelicidin was able to induce cell-death characteristics in Leishmania in a dose dependent manner. Using human primary macrophages, we demonstrated pro-inflammatory macrophages (hMDM1) to express a higher level of human cathelicidin, both on gene and protein level, compared to anti-inflammatory macrophages (hMDM2). Activating the CAMP pathway using Vitamin D in hMDM1 resulted in a cathelicidin-mediated-Leishmania restriction. Finally, a reduction of cathelicidin in hMDM1, using a RNA interference (RNAi) approach, increased Leishmania parasite survival. In all, these data show the human cathelicidin to contribute to the innate immune response against Leishmaniasis in a human primary cell model.
Host defense to intracellular pathogens depends upon both innate and adaptive cell-mediated immune responses. Polymorphonuclear neutrophil leukocytes which belong to the innate immune system are the first cells that are recruited massively within hours of microbial infection. The importance of neutrophils in the development of an immune response is only emerging as they have long been considered by immunologists as short lived, non-dividing cells, of poor interest. Now, neutrophils are emerging as key components of the inflammatory response, and are shown to have immunoregulatory roles in microbial infections. The impact of neutrophils on cells present at the site of infection is only beginning to be studied and deserves more attention. This e-book provides an overview of the recent advances made in the field of neutrophil biology and motions towards some of the exciting new directions in which neutrophil research is moving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.