Intraslope basins, or minibasins, are topographic features of the continental slope that can be filled with sediment transported by submarine flows. These deposits may contain important hydrocarbon reservoirs. Here we present results of two-dimensional numerical simulations of multiple turbidity currents entering two linked minibasins. The numerical model accounts for the non-uniformity of sediment grain size in the flow and the resulting deposit. Model results reasonably reproduce the evolution of linked minibasins illustrated in the field based “fill-and-spill” conceptual model. The conceptual model was developed for the Brazos–Trinity system from field observations. Further, simulations of two linked minibasins show that the upstream basin traps most of the coarse sediment. This material is deposited in the proximal zone of the basin and fine sediment is transported farther downslope, resulting in the formation of a weak pattern of downstream fining. Model results with different initial and boundary conditions reveal that minibasin geometry and turbidity-current characteristics are important controls on the deposit shape and grain-size distribution.
Consider the [turbidity] current as ... a river" R. ; the foundation of contemporary deep marine sedimentology.Gravity currents, such as sediment-laden turbidity currents, are ubiquitous natural flows that are driven by a density difference. Turbidity currents have provided vital motivation to advance understanding of this class of flows because their enigmatic long run-out and driving mechanisms are not properly understood. Extant models assume that material transport by gravity currents is dynamically similar to fluvial flows. Here, empirical research from different types of particle-driven gravity currents is integrated with our experimental data, to show that material transport is fundamentally different from fluvial systems. Contrary to current theory, buoyancy production is shown to have a non-linear dependence on available flow power, indicating an underestimation of the total kinetic energy lost from the mean flow. A revised energy budget directly implies that the mixing efficiency of gravity currents is enhanced.
Gravity currents, such as sediment-laden turbidity currents, are ubiquitous natural flows that are driven by a density difference. Turbidity currents have provided vital motivation to advance understanding of this class of flows because their enigmatic long run-out and driving mechanisms are not properly understood. Extant models assume that material transport by gravity currents is dynamically similar to fluvial flows. Here, empirical research from different types of particle-driven gravity currents is integrated with our experimental data, to show that material transport is fundamentally different from fluvial systems. Contrary to current theory, buoyancy production is shown to have a non-linear dependence on available flow power, indicating an underestimation of the total kinetic energy lost from the mean flow. A revised energy budget directly implies that the mixing efficiency of gravity currents is enhanced.
<p>The transport of sediment shapes rivers and deltas, and has a huge impact on natural fluvial processes and human interaction within these environments. Conservation and hydraulic engineering applications in river basins crucially depend on understanding the processes of scour, transport and deposition of sediments. The sediment entrainment process in mathematical models are typically based on laboratory experiment using clean (abiotic) sediments. However, natural sediments are rich in biological communities, often forming visible biofilms which include sticky Extracellular Polymeric Substances (EPS). The presence of biological communities has been shown to significantly increase the critical shear stress of sediment entrainment compared with clean sediment, and these communities are recognized as &#8216;ecosystem engineers&#8217; as they act as bio-stabilizers. Furthermore, biofilms provide stability, such that only the most energetic conditions can remove them in a sudden catastrophic way. In this study, a one-dimensional (1D) morphodynamic model for rivers is implemented to account for the development and growth of a surface biofilm subject to variable hydrodynamic disturbances (e.g. tidal forces) and with a biofilm-dependent erodibility. The 1D form of the shallow water equations are simplified with the aid of the quasi-steady approximation and the Exner equation expressing the conservation of bed material is used to compute the changes in channel bed elevation. The effect of geochemical drivers such as light, temperature and nutrients, which affect the presence or absence and growth of a biofilm, is accounted for in the model. Previous studies have shown that when sediments are covered by biofilms, entrainment occurs via biomat failure and the carpet-like detachment of biofilm-sediment composites. Different hydrodynamic conditions are tested to investigate their role in eroding the biofilm and detaching it from the sediment surface.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.