Stroke patients vary considerably in terms of outcomes: some patients present ‘natural’ recovery proportional to their initial impairment (fitters), while others do not (non-fitters). Thus, a key challenge in stroke rehabilitation is to identify individual recovery potential to make personalized decisions for neuro-rehabilitation, obviating the ‘one-size-fits-all’ approach. This goal requires (i) the prediction of individual courses of recovery in the acute stage; and (ii) an understanding of underlying neuronal network mechanisms. ‘Natural’ recovery is especially variable in severely impaired patients, underscoring the special clinical importance of prediction for this subgroup. Fractional anisotropy connectomes based on individual tractography of 92 patients were analysed 2 weeks after stroke (TA) and their changes to 3 months after stroke (TC − TA). Motor impairment was assessed using the Fugl-Meyer Upper Extremity (FMUE) scale. Support vector machine classifiers were trained to separate patients with natural recovery from patients without natural recovery based on their whole-brain structural connectomes and to define their respective underlying network patterns, focusing on severely impaired patients (FMUE < 20). Prediction accuracies were cross-validated internally, in one independent dataset and generalized in two independent datasets. The initial connectome 2 weeks after stroke was capable of segregating fitters from non-fitters, most importantly among severely impaired patients (TA: accuracy = 0.92, precision = 0.93). Secondary analyses studying recovery-relevant network characteristics based on the selected features revealed (i) relevant differences between networks contributing to recovery at 2 weeks and network changes over time (TC − TA); and (ii) network properties specific to severely impaired patients. Important features included the parietofrontal motor network including the intraparietal sulcus, premotor and primary motor cortices and beyond them also attentional, somatosensory or multimodal areas (e.g. the insula), strongly underscoring the importance of whole-brain connectome analyses for better predicting and understanding recovery from stroke. Computational approaches based on structural connectomes allowed the individual prediction of natural recovery 2 weeks after stroke onset, especially in the difficult to predict group of severely impaired patients, and identified the relevant underlying neuronal networks. This information will permit patients to be stratified into different recovery groups in clinical settings and will pave the way towards personalized precision neurorehabilitative treatment.
Background and Purpose: Structural brain networks possess a few hubs, which are not only highly connected to the rest of the brain but are also highly connected to each other. These hubs, which form a rich-club, play a central role in global brain organization. To investigate whether the concept of rich-club sheds new light on poststroke recovery, we applied a novel network-theoretical quantification of lesions to patients with stroke and compared the outcomes with what lesion size alone would indicate. Methods: Whole-brain structural networks of 73 patients with ischemic stroke were reconstructed using diffusion-weighted imaging data. Disconnectomes, a new type of network analyses, were constructed using only those fibers that pass through the lesion. Fugl-Meyer upper extremity scores and their changes were used to determine whether the patients show natural recovery or not. Results: Cluster analysis revealed 3 patient clusters: small-lesion-good-recovery, midsized-lesion-poor-recovery (MLPR), and large-lesion-poor-recovery (LLPR). The small-lesion-good-recovery consisted of subjects whose lesions were small, and whose prospects for recovery were relatively good. To explain the nondifference in recovery between the MLPR and LLPR clusters despite the difference (LLPR>MLPR) in lesion volume, we defined the metric to be the sum of the entries in the disconnectome and, more importantly, the to be the sum of all entries in the disconnectome corresponding to edges with at least one node in the rich-club. Unlike lesion volume and corticospinal tract damage (MLPR<LLPR), for , this relationship was reversed (MLPR>LLPR) or showed no difference for . Conclusions: Smaller lesions that focus on the rich-club can be just as devastating as much larger lesions that do not focus on the rich-club, pointing to the role of the rich-club as a backbone for functional communication within brain networks and for recovery from stroke.
Transcranial direct current stimulation (tDCS)-based interventions for augmenting motor learning are gaining interest in systems neuroscience and clinical research. Current approaches focus largely on monofocal motorcortical stimulation. Innovative stimulation protocols, accounting for motor learning related brain network interactions also, may further enhance effect sizes. Here, we tested different stimulation approaches targeting the cerebro-cerebellar loop. Forty young, healthy participants trained a fine motor skill with concurrent tDCS in four sessions over two days, testing the following conditions: (1) monofocal motorcortical, (2) sham, (3) monofocal cerebellar, or (4) sequential multifocal motorcortico-cerebellar stimulation in a double-blind, parallel design. Skill retention was assessed after circa 10 and 20 days. Furthermore, potential underlying mechanisms were studied, applying paired-pulse transcranial magnetic stimulation and multimodal magnetic resonance imaging-based techniques. Multisession motorcortical stimulation facilitated skill acquisition, when compared with sham. The data failed to reveal beneficial effects of monofocal cerebellar or additive effects of sequential multifocal motorcortico-cerebellar stimulation. Multimodal multiple linear regression modelling identified baseline task performance and structural integrity of the bilateral superior cerebellar peduncle as the most influential predictors for training success. Multisession application of motorcortical tDCS in several daily sessions may further boost motor training efficiency. This has potential implications for future rehabilitation trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.