The addition of nitrophenyl groups to the surface of few-layer epitaxial graphene (EG) by the formation of covalent carbon-carbon bonds changed the electronic structure and transport properties of the EG from near-metallic to semiconducting.
Covalent derivatization of the acidic functional groups in oxidized graphite with octadecylamine renders graphite soluble in common organic solvents. Atomic force microscopic characterization of the soluble species supports the idea that the solutions consist of single and few layer graphene sheets, and we report the first solution properties of graphite.
The increased heat generated in high density electronics has intensified the search for advanced thermal interface materials (TIMs) and prompted fundamental studies at the nanoscale level to develop filler materials with enhanced thermal performance. [1][2][3][4] Single-walled carbon nanotubes (SWNTs) considerably improve the heat transport in polymer composites as a result of their one-dimensional (1D) structure, high thermal conductivity and high aspect ratio. [5][6][7][8][9][10][11][12] Recently, two-dimensional (2D) nanostructures such as graphite nanoplatelets (GNPs), have emerged as a promising filler in polymer matrices [13][14][15][16][17][18][19] and it has been shown that they provide even higher thermal conductivity enhancement than SWNTs. [16] In this study we combine 1D-SWNTs and 2D-GNPs to prepare a series of hybrid graphitic nanofillers and we observe a synergistic effect between the GNPs and SWNTs in the enhancement of the thermal conductivity of epoxy composites to the point that at certain filler loadings the hybrid composition outperforms composites utilizing pure GNP or SWNT fillers. The increased thermal conductivity is ascribed to the formation of a more efficient percolating nanoparticle network with significantly reduced thermal interface resistances. The idea of using a hybrid filler comprised of two or more traditional filler materials has already been explored in the literature and it has been demonstrated that improved composite performance can be achieved by combining the advantages of each filler. [20,21] Commercially available thermal greases and adhesives often utilize several components to achieve the desired combination of thermal and electrical conductivities, viscosity and low coefficient of thermal expansion. In our study, we utilize two different nanostructured graphitic fillers for incorporation into epoxy resin: purified SWNTs and graphite nanoplatelets (GNPs) comprised of few graphene layer G n , where n $ 4. The SWNT component of the hybrid filler is electric arc produced purified SWNTs with a typical length of 0.3-1.0 mm and an average diameter of 1.4 nm. The purification process [22] leaves the SWNTs ends and side-walls functionalized with carboxylic acid groups and this facilitates their homogeneous dispersion into the polymer matrix. In addition, the epoxy curing process is accompanied by a cross-linking reaction between the carboxylic acid groups of the SWNTs and the epoxy groups of the polymer, [23] thus improving the integration of SWNTs into the polymer matrix. GNPs are typically prepared by intercalation and exfoliation of graphite; [24][25][26][27][28][29] and by control of the exfoliation conditions we were able to obtain GNPs comprised of 2 to 8 graphene layers with a lateral dimension of 200-1000 nm and an aspect ratio in the range of 50 to 300. [16] This was achieved by thermal shock exfoliation of natural graphite flakes at 800 8C [25,26] followed by high shear mixing and sonication in order to separate the exfoliated graphite flakes into nanoplatelets.[...
In order to engineer a band gap into graphene, covalent bond-forming reactions can be used to change the hybridization of the graphitic atoms from sp 2 to sp 3 , thereby modifying the conjugation length of the delocalized carbon lattice; similar side-wall chemistry has been shown to introduce a band gap into metallic single-walled carbon nanotubes. Here we demonstrate that the application of such covalent bond-forming chemistry modifies the periodicity of the graphene network thereby introducing a band gap (∼0.4 eV), which is observable in the angle-resolved photoelectron spectroscopy of aryl-functionalized graphene. We further show that the chemically-induced changes can be detected by Raman spectroscopy; the in-plane vibrations of the conjugated π-bonds exhibit characteristic Raman spectra and we find that the changes in D, G, and 2D-bands as a result of chemical functionalization of the graphene basal plane are quite distinct from that due to localized, physical defects in sp 2 -conjugated carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.