Eyes never stop moving. Even when asked to maintain the eyes at fixation, the oculomotor system produces small and rapid eye movements called microsaccades, at a frequency of about 1.5-2 s(-1). The frequency of microsaccades changes when a stimulus is presented in the visual field, showing a stereotyped response pattern consisting of an early inhibition of microsaccades followed by a rebound, before the baseline is reached again. Although this pattern of response has generally been considered as a sort of oculomotor reflex, directional biases in microsaccades have been recently linked to the orienting of spatial attention. In the present study, we show for the first time that regardless of any spatial bias, the pattern of absolute microsaccadic frequency is different for oddball stimuli compared to that elicited by standard stimuli. In a visual-oddball task, the oddball stimuli caused an initial prolonged inhibition of microsaccades, particularly when oddballs had to be explicitly recognized and remembered. The present findings suggest that high-order cognitive processes, other than spatial attention, can influence the frequency of microsaccades. Finally, we also introduce a new method for exploring the visual system response to oddball stimuli.
Inhibition of return (IOR) is the term used to describe the phenomenon whereby stimuli appearing at recently attended locations are reacted to less efficiently than stimuli appearing at locations that have not yet been attended. In the present study, we employed a typical IOR paradigm with peripheral uninformative cues while participants maintained their eyes at fixation. Eye position was monitored at a high sampling rate (500 Hz) in order to detect miniature eye movements called microsaccades, which have been shown to be crucial for avoiding disappearance of visual image. However, recent studies have demonstrated a close relationship between covert endogenous attentional shifts and the direction of microsaccades. Here, we demonstrate that the direction of microsaccades can be biased away from the peripheral location occupied by a salient, although task-irrelevant, visual signal. Because microsaccades are known not to be under conscious control, our results suggest strong links between IOR and unconscious oculomotor programming.
The direction of microsaccades has been shown to be biased by the allocation of spatial attention. Here, we investigated whether the cognitive processes involved in preparing to respond to an upcoming target can modulate the microsaccadic response. Specifically, we found that optimal manual response preparation, reflected by faster response times, was associated with a reduction in the absolute frequency of microsaccades. The present results are consistent with previous studies suggesting a relationship between oculomotor activity and different sorts of motor responses. Our findings, however, surprisingly demonstrate that the effect of preparation and stimulus expectation extends to an automatic and unconscious oculomotor activity such as microsaccade execution.
Much is known about the functional mechanisms involved in visual search. Yet, the fundamental question of whether the visual system can perform different types of visual analysis at different spatial resolutions still remains unsettled. In the visual-attention literature, the distinction between different spatial scales of visual processing corresponds to the distinction between distributed and focused attention. Some authors have argued that singleton detection can be performed in distributed attention, whereas others suggest that even such a simple visual operation involves focused attention. Here we showed that microsaccades were spatially biased during singleton discrimination but not during singleton detection. The results provide support to the hypothesis that some coarse visual analysis can be performed in a distributed attention mode.
This study examined the relationship between inhibition of return (IOR) in covert orienting and microsaccade statistics. Unlike a previous study [Galfano, G., Betta, E., & Turatto, M. (2004)], IOR was assessed by means of a target-target paradigm, and microsaccade dynamics were monitored as a function of both the first and the second visual event. In line with what has been reported with a cue-target paradigm, a significant directional modulation was observed opposite to the first visual event. Because participants were to respond to any stimulus, this rules out the possibility that the modulation resulted from a generic motor inhibition, showing instead that it is peculiarly coupled to the oculomotor system. Importantly, after the second visual event, a different response was observed in microsaccade orientation, whose direction critically depended of whether the second visual event appeared at the same location as the first visual event. The results are consistent with the notion that IOR is composed of both attentional and oculomotor components, and challenge the view that covert orienting paradigms engage the attentional component in isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.