We investigate Wiener-transformable markets, where the driving process is given by an adapted transformation of a Wiener process. This includes processes with long memory, like fractional Brownian motion and related processes, and, in general, Gaussian processes satisfying certain regularity conditions on their covariance functions. Our choice of markets is motivated by the well-known phenomena of the so-called "constant" and "variable depth" memory observed in real world price processes, for which fractional and multifractional models are the most adequate descriptions. Motivated by integral representation results in general Gaussian setting, we study the conditions under which random variables can be represented as pathwise integrals with respect to the driving process. From financial point of view, it means that we give the conditions of replication of contingent claims on such markets. As an application of our results, we consider the utility maximization problem in our specific setting. Note that the markets under consideration can be both arbitrage and arbitrage-free, and moreover, we give the representation results in terms of bounded strategies.
In this paper we consider a variation of the Merton's problem with added stochastic volatility and finite time horizon. It is known that the corresponding optimal control problem may be reduced to a linear parabolic boundary problem under some assumptions on the underlying process and the utility function. The resulting parabolic PDE is often quite difficult to solve, even when it is linear. The present paper contributes to the pool of explicit solutions for stochastic optimal control problems. Our main result is the exact solution for optimal investment in Heston model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.