Depressive disorders (DDs) are one of the most widespread forms of psychiatric pathology. According to the World Health Organization, about 350 million people in the world are affected by this condition. Family and twin studies have demonstrated that the contribution of genetic factors to the risk of the onset of DDs is quite large. Various methodological approaches (analysis of candidate genes, genome-wide association analysis, genome-wide sequencing) have been used, and a large number of the associations between genes and different clinical DD variants and DD subphenotypes have been published. However, in most cases, these associations have not been confirmed in replication studies, and only a small number of genes have been proven to be associated with DD development risk. To ascertain the role of genetic factors in DD pathogenesis, further investigations of the relevant conditions are required. Special consideration should be given to the polygenic characteristics noted in whole-genome studies of the heritability of the disorder without a pronounced effect of the major gene. These observations accentuate the relevance of the analysis of gene-interaction roles in DD development and progression. It is important that association studies of the inherited variants of the genome should be supported by analysis of dynamic changes during DD progression. Epigenetic changes that cause modifications of a gene's functional state without changing its coding sequence are of primary interest. However, the opportunities for studying changes in the epigenome, transcriptome, and proteome during DD are limited by the nature of the disease and the need for brain tissue analysis, which is possible only postmortem. Therefore, any association studies between DD pathogenesis and epigenetic factors must be supplemented through the use of different animal models of depression. A threefold approach comprising the combination of gene association studies, assessment of the epigenetic state in DD patients, and analysis of different “omic” changes in animal depression models will make it possible to evaluate the contribution of genetic, epigenetic, and environmental factors to the development of different forms of depression and to help develop ways to decrease the risk of depression and improve the treatment of DD.
This study was conducted to explore the possibility of association between the single-nucleotide polymorphisms rs6264 of BDNF, rs5443 of GNB3, and rs1801133 of MTHFR; the In/Del polymorphism of ACE; and the ε2 allele of APOE and major depressive disorder (MDD) and recurrent depressive disorder (RDD) in an East Slavic population. Generalized multifactor dimensionality reduction (GMDR) method was applied to detect gene-gene interactions. One hundred fifty patients with RDD (101 females and 49 males) and 208 patients with MDD (115 females and 93 males) were included in the study. The comparison group consisted of 200 unrelated individuals. There was no significant difference in genotype distributions or allele frequencies between the controls and any of the diagnostic groups. Nevertheless, the frequency of the G allele of rs1801133 of MTHFR was higher in the RDD group and the frequency of the C allele of rs6264 of BDNF was higher in the MDD group. The difference between the controls and specific disease groups almost reached statistical significance (P = 0.08). A GMDR did not reveal optimal two- and three-dimensional models with significant prediction accuracies (P ˃ 0.05) for the MDD or RDD groups.
It was shown that the anxiolytic effect of Selank is comparable to that of classical benzodiazepine drugs and that the basis of their mechanism of action may be similar. These data suggest that the presence of Selank may change the action of classical benzodiazepine drugs. To test this hypothesis, we evaluated the anxiolytic activity of Selank and diazepam in rats both under conditions of unpredictable chronic mild stress and in its absence, after the individual and combined administration of these compounds using the elevated plus maze test. We found that, even in the absence of chronic stress, the administration of a course of test substances changed anxiety indicators toward their deterioration, but the changes after the administration of a course of Selank were less pronounced. In conditions of chronic stress, anxiety indicator values after the simultaneous use of diazepam and Selank did not differ from the respective values observed before chronic stress exposure. The data obtained indicate that the individual administration of Selank was the most effective in reducing elevated levels of anxiety, induced by the administration of a course of test substances, whereas the combination of diazepam with Selank was the most effective in reducing anxiety in unpredictable chronic mild stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.