A model of the 66-kDa outer membrane protein (P66) of Lyme disease Borrelia spp. predicts a surfaceexposed loop near the C terminus. This region contains an antigen commonly recognized by sera from Lyme disease patients. In the present study, this region of P66 and homologous proteins of other Borrelia spp. were further investigated by using monoclonal antibodies, epitope mapping of P66 of Borrelia burgdorferi, and DNA sequencing. A monoclonal antibody specific for B. burgdorferi bound to the portion of P66 that was accessible to proteolysis in situ. The linear epitope for the antibody was mapped within a variable segment of the surface-exposed region. To further study this protein, the complete gene of Borrelia hermsii for a protein homologous to P66 was cloned. The deduced protein was 589 amino acids in length and 58% identical to P66 of B. burgdorferi. The B. hermsii P66 protein was predicted to have a surface-exposed region in the same location as that of B. burgdorferi's P66 protein. With primers designed on the basis of conserved sequences and PCR, we identified and cloned the same regions of P66 proteins of Borrelia turicatae, Borrelia parkeri, Borrelia coriaceae, and Borrelia anserina. The deduced protein sequences from all species demonstrated two conserved hydrophobic regions flanking a surface-exposed loop. The loop sequences were highly variable between different Borrelia spp. in both sequence and size, varying between 35 and 45 amino acids. Although the actual function of P66 of Borrelia spp. is unknown, the results suggest that its surface-exposed region is subject to selective pressure.
Genetic transformation of Borrelia spp. is limited in development and has found application in only one species. For a non‐genetic approach for manipulating the phenotype of these spirochaetes, we determined whether exogenous recombinant lipoproteins would incorporate in the cell's outer membrane. Using unlabelled or 125I‐labelled Osp proteins, Osp‐specific monoclonal antibodies, proteinase K and formaldehyde as reagents, we found that decoration of spirochaetes had the following characteristics. (i) Purified recombinant OspA or OspD lipoproteins associated with Borrelia burgdorferi and B. hermsii cells that lacked abundant lipoproteins of their own. (ii) This decoration of the cells with exogenous OspA did not affect cell's viability. (iii) The decoration was concentration and temperature dependent and stable for at least 24 h. (iv) Like native OspA, the recombinant OspA decorating the cells was accessible to antibodies and proteases and could be cross‐linked to the integral outer membrane protein, P66. (v) Decoration of viable B. burgdorferi and B. hermsii with OspA rendered the cells susceptible to killing by OspA‐specific antiserum. Such non‐genetic alteration of the surface of a bacterium may be used to study functions and properties of lipoproteins in situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.