Avena sterilis (sterile oat) is one of the most extended and harmful weeds
in Mediterranean cereal crops. A process‐based niche model for this species was developed using CLIMEX. The model was validated and used to assess the potential distribution of A. sterilis in Europe under the current climate and under two climate change scenarios. Both scenarios represent contrasting temporal patterns of economic development and CO2 emissions. The projections under current climate conditions indicated that A. sterilis does not occupy the full extent of the climatically suitable habitat available to it in Europe. Under future climate scenarios, the model projection showed a gradual advance of sterile oat towards Northeastern Europe and a contraction in Southern Europe. The infested potential area increases from the current 45.2% to 51.3% in the low‐emission CO2 scenario and to 59.5% under the most extreme scenario. These results provide the necessary knowledge for identifying and highlighting the potential invasion risk areas and for establishing the grounds on which to base the planning and management measures required. The main actions should be focused on controlling the large‐scale seed scattering, preventing seed dispersal into potentially suitable areas.
Lolium rigidum L. (rigid ryegrass) is one of the most extensive and harmful weeds in winter cereal crops. A bioclimatic model for this species was developed using CLIMEX. The model was validated with records from North America and Oceania and used to assess the global potential distribution of L. rigidum under the current climate and under two climate change scenarios. Both scenarios represent contrasting temporal patterns of economic development and carbon dioxide (CO 2 ) emissions. The projections under current climatic conditions indicated that L. rigidum does not occupy the full extent of the climatically suitable area available to it. Under future climate scenarios, the suitable potential area increases by 3·79% in the low-emission CO 2 scenario and by 5·06% under the most extreme scenario. The model's projection showed an increase in potentially suitable areas in North America, Europe, South America and Asia; while in Africa and Oceania it indicated regression. These results provide the necessary knowledge for identifying and highlighting the potential invasion risk areas and for establishing the grounds on which to base the planning and management measures required.
Climate change is not only evident, but its implications on biodiversity are already patent. The scientific community has delved into the limitations and capabilities of species to face changes in climatic conditions through experimental studies and, primarily, Species Distribution Models (SDMs). Nevertheless, the widespread use of SDMs comes with some intrinsic assumptions, such as niche conservatism, which are not always true. Alternatively, the fossil record can provide additional data to solve the uncertainties of species’ responses to climate change based on their history. Using a combined environmental (niche overlap indices) and geographical approach (temporal transferability of SDMs), we assessed the niche conservatism of Microtus cabrerae throughout its evolutionary history: the Late Pleistocene and the Holocene. The set of analyses performed within this timeframe provides a broad view pointing to a shift in the realized climatic niche of the species. Specifically, M. cabrerae exhibited a broader niche during glacial times than interglacial times, expanding towards novel conditions. Hence, the species might have developed an adaptive ability, as a consequence of mechanisms of local adaptation or natural pressures, or just be preadapted to cope with the novel environment, due to expansion into an unfilled portion of the niche. Nevertheless, the more restricted realized niche during last interglacial times reveals that the species could be close to its physiological limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.