Reuse of treated wastewater for turf irrigation is often viewed as one way to maximize existing urban water resources. The aim of this study is to evaluate the applicability of treated wastewater for turfgrass and assess the effects of continuous use of treated water on the soil and crop. Two turfgrass plots irrigated with drinking water and treated wastewater were monitored over a two-year period. Physical and chemical parameters in the soil and foliar tissue were analyzed. Plants irrigated with treated wastewater had highest sodium content. There were no negative effects with respect to changes in soil pH but a significant increase in electrical conductivity and sodium content was observed in wastewater-irrigated soil. Treated wastewater could be used as a resource for agricultural irrigation since it contributes phosphorus and organic matter. However, it is necessary to consider that several crops could be negatively affected by wastewater irrigation because of the sodium content and this should be taken into account when water-sprinklers are in use, since this is the case in the present study. The benefits of irrigation with treated urban wastewater include contributing plant nutrients to turfgrass while conserving freshwater.
The aim of this study was to evaluate the applicability of treated wastewater for horticultural crops, assess the effects of continuous use of treated water on soil and crops, and analyse the physical, chemical and biological effects of irrigation with recycled water. Two lettuce plots watered with drinking water and treated wastewater were monitored over a three year period. Nutrients, heavy metal and the dynamics of pathogen and indicator microorganism content in soil and foliar tissues were analysed. Wastewater irrigation had a high influence on soil parameters: organic matter, N, P, Ca, Al, Fe, Pb and Zn. Indicator and pathogenic microorganisms were detected in soil and plants grown in the wastewater-irrigated plot, and persisted in the soil for 27 days during the study under humid conditions. N, P, Pb and Al content were significantly higher in plant tissues of wastewater-irrigated plots than in the control after 3 years of irrigation. Harvest was significantly higher in the wastewater-irrigated plot. Wastewater can be a resource for agricultural irrigation. In any case, the possible heavy metal accumulation in soils and presence of pathogenic organisms require careful management of this alternative resource: use of a drip irrigation system, previous wastewater disinfection and a limited irrigation period are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.