With this method, we are able to reduce the positioning accuracy to 0.2 mm. Consequently, the dose distribution in the junction of abutted fields is highly smoothed, achieving the maximum dose heterogeneity to be less than 3%.
The new multislice computed tomography (CT) machines require some new methods of shielding calculation, which need to be analysed. NCRP Report No. 147 proposes three shielding calculation methods based on the following dosimetric parameters: weighted CT dose index for the peripheral axis (CTDI(w, per)), dose-length product (DLP) and isodose maps. A survey of these three methods has been carried out. For this analysis, we have used measured values of the dosimetric quantities involved and also those provided by the manufacturer, making a comparison between the results obtained. The barrier thicknesses when setting up two different multislice CT instruments, a Philips Brilliance 16 or a Philips Brilliance 64, in the same room, are also compared. Shielding calculation from isodose maps provides more reliable results than the other two methods, since it is the only method that takes the actual scattered radiation distribution into account. It is concluded therefore that the most suitable method for calculating the barrier thicknesses of the CT facility is the one based on isodose maps. This study also shows that for different multislice CT machines the barrier thicknesses do not necessarily become bigger as the number of slices increases, because of the great dependence on technique used in CT protocols for different anatomical regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.