We determined nucleotide sequences of the VP1 and 2AB genes and portions of the 2C and 3D genes of two evolving poliovirus lineages: circulating wild viruses of T geotype and Sabin vaccine-derived isolates from an immunodeficient patient. Different regions of the viral RNA were found to evolve nonsynchronously, and the rate of evolution of the 2AB region in the vaccine-derived population was not constant throughout its history. Synonymous replacements occurred not completely randomly, suggesting the need for conservation of certain rare codons (possibly to control translation elongation) and the existence of unidentified constraints in the viral RNA structure. Nevertheless the major contribution to the evolution of the two lineages came from linear accumulation of synonymous substitutions. Therefore, in agreement with current theories of viral evolution, we suggest that the majority of the mutations in both lineages were fixed as a result of successive sampling, from the heterogeneous populations, of random portions containing predominantly neutral and possibly adverse mutations. As a result of such a mode of evolution, the virus fitness may be maintained at a more or less constant level or may decrease unless more-fit variants are stochastically generated. The proposed unifying model of natural poliovirus evolution has important implications for the epidemiology of poliomyelitis.Analysis of polioviruses isolated either during a given outbreak of poliomyelitis (30,35,51) or from sequential fecal samples from infected individuals (29, 31, 34) has revealed rapid changes in the nucleotide sequence of the viral 7.5-kb RNA. Oligonucleotide fingerprinting (51) and genome sequencing (30, 34) suggested that, during the epidemic, the nucleotide substitutions ranged from 1 to 2% per year. The molecular basis of such genetic instability, common to all RNA viruses, resides in a high error rate of the viral RNA-dependent RNA polymerases, estimated to be, for poliovirus, on the order of 10 Ϫ4 to 10 Ϫ5 substitutions per base per replication (12,70,71), and the absence of proofreading mechanisms for the correction of the errors made. The combination of these properties results in a high heterogeneity (the "quasispecies" nature) of all populations of the virus (8,10,11,63).Less understood, however, are the rules governing the fixation of specific mutations upon passages of a viral population. Generally speaking, a mutation may decrease or increase the level of virus fitness for a particular ecological niche or leave it unchanged. Nucleotide substitutions associated with changes in the "sense" of codons (nonsynonymous mutations) are less likely to be neutral than substitutions resulting in no change of the codon meaning (synonymous mutations). Fixation of mutations conferring a selective advantage is readily understood in the framework of positive Darwinian selection. Adverse mutations may be eliminated by negative selection.The likelihood of fixation of a mutation depends not only on the associated changes in virus fitness but, ...
Transplanted donor lymphocytes infused during hematopoietic stem cell transplantation (HSCT) have been shown to cure patients with hematological malignancies. However, less is known about the effects of HSCT on metastatic solid tumors. Thus, a better understanding of the immune cells and their target antigens that mediate tumor regression is urgently needed to develop more effective HSCT approaches for solid tumors. Here we report regression of metastatic renal cell carcinoma (RCC) in patients following nonmyeloablative HSCT consistent with a graft-versus-tumor effect. We detected RCC-reactive donor-derived CD8 + T cells in the blood of patients following nonmyeloablative HSCT. Using cDNA expression cloning, we identified a 10-mer peptide (CT-RCC-1) as a target antigen of RCC-specific CD8 + T cells. The genes encoding this antigen were found to be derived from human endogenous retrovirus (HERV) type E and were expressed in RCC cell lines and fresh RCC tissue but not in normal kidney or other tissues. We believe this to be the first solid tumor antigen identified using allogeneic T cells from a patient undergoing HSCT. These data suggest that HERV-E is activated in RCC and that it encodes an overexpressed immunogenic antigen, therefore providing a potential target for cellular immunity.
VHL-deficient clear cell renal cell carcinomas (ccRCC), the most common form of kidney cancer, express transcripts derived from the novel human endogenous retrovirus HERV-E (named CT-RCC HERV-E). In this study, we define a transcript encoding the entire envelope gene of HERV-E as expressed selectively in ccRCC tumors, as distinct from normal kidney tissues or other tumor types. Sequence analysis of this envelope transcript revealed long open reading frames encoding putative surface and transmembrane envelope proteins. Retroviral envelopes are known to be capable of eliciting immunity in humans. Accordingly, we found that HLA-A*0201-restricted peptides predicted to be products of the CT-RCC HERV-E envelope transcript stimulated CD8+ T cells which could recognize HLA-A*0201-positive HERV-E-expressing kidney tumor cells. Overall, our results offer evidence of unique HERV-E envelope peptides presented on the surface of ccRCC cells, offering potentially useful tumor-restricted targets for T cell-based immunotherapy of kidney cancer.
Successful implementation of the global poliomyelitis eradication program raises the problem of vaccination against poliomyelitis in the posteradication era. One of the options under consideration envisions completely stopping worldwide the use of the Sabin vaccine. This strategy is based on the assumption that the natural circulation of attenuated strains and their derivatives is strictly limited. Here, we report the characterization of a highly evolved derivative of the Sabin vaccine strain isolated in a case of paralytic poliomyelitis from a 7-month-old immunocompetent baby in an apparently adequately immunized population. Analysis of the genome of this isolate showed that it is a double (type 1-type 2-type 1) vaccine-derived recombinant. The number of mutations accumulated in both the type 1-derived and type 2-derived portions of the recombinant genome suggests that both had diverged from their vaccine predecessors ϳ2 years before the onset of the illness. This fact, along with other recent observations, points to the possibility of long-term circulation of Sabin vaccine strain derivatives associated with an increase in their neurovirulence. Comparison of genomic sequences of this and other evolved vaccine-derived isolates reveals some general features of natural poliovirus evolution. They include a very high preponderance and nonrandom distribution of synonymous substitutions, conservation of secondary structures of important cis-acting elements of the genome, and an apparently adaptive character of most of the amino acid mutations, with only a few of them occurring in the antigenic determinants. Another interesting feature is a frequent occurrence of tripartite intertypic recombinants with either type 1 or type 3 homotypic genomic ends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.