In barley, variation in the requirement for vernalization (an extended period of low temperature before flowering can occur) is determined by the VRN-H1, -H2 and -H3 loci. In European cultivated germplasm, most variation in vernalization requirement is accounted for by alleles at VRN-H1 and VRN-H2 only, but the range of allelic variation is largely unexplored. Here we characterise VRN-H1 and VRN-H2 haplotypes in 429 varieties representing a large portion of the acreage sown to barley in Western Europe over the last 60 years. Analysis of genotype, intron I sequencing data and growth habit tests identified three novel VRN-H1 alleles and determined the most frequent VRN-H1 intron I rearrangements. Combined analysis of VRN-H1 and VRN-H2 alleles resulted in the classification of seventeen VRN-H1/VRN-H2 multi-locus haplotypes, three of which account for 79% of varieties. The molecular markers employed here represent powerful diagnostic tools for prediction of growth habit and assessment of varietal purity. These markers will also allow development of germplasm to test the behaviour of individual alleles with the aim of understanding the relationship between allelic variation and adaptation to specific agri-environments.
Background: Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter-and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2) have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure.
Advanced backcross QTL (AB-QTL) analysis was deployed to identify allelic variation in wild barley (Hordeum vulgare ssp. spontaneum) of value in the improvement of grain yield and other agronomically important traits in barley (Hordeum vulgare ssp. vulgare) grown under conditions of water deficit in Mediterranean countries. A population of 123 double haploid (DH) lines obtained from BC 1 F 2 plants derived from a cross between Barke (European two-row cultivar) and HOR11508 (wild barley accession) were tested in replicated field trials, under varying conditions of water availability in Italy, Morocco and Tunisia, for seven quantitative traits. Significant QTL effects at one (P ≤ 0.001) or more trial sites (P ≤ 0.01) were identified for all traits. At 42 (52%) of the 80 putative QTLs identified, the allele increasing a "traits' value" was contributed by H. spontaneum. For example, though the majority (67%) of QTL alleles increasing grain yield were contributed by H. vulgare, H. spontaneum contributed the alleles increasing grain yield at six regions on chromosomes 2H, 3H, 5H and 7H. Among them, two QTLs (associated to Bmac0093 on chromosome 2H and to Bmac0684 on chromosome 5H) were identified in all three locations and had the highest additive effects. The present study shows the validity of deploying AB-QTL analysis for identifying favourable QTL alleles from wild germplasm and indicates its potential as an enhancement strategy for the genetic improvement of cultivars better adapted to drought-prone environments.
Single nucleotide polymorphisms (SNPs) are the most abundant form of DNA polymorphism. These polymorphisms can be used in plants as simple genetic markers for many breeding applications, for population studies, and for germplasm fingerprinting. The great increase in the available DNA sequences in the databases has made it possible to identify SNPs by "database mining", and the single most important factor preventing their widespread use appears to be the genotyping cost. Many genotyping platforms rely on the use of sophisticated, automated equipment coupled to costly chemistry and detection systems. A simple and economical method involving a single PCR is reported here for barley SNP genotyping. Using the tetra-primer ARMS-PCR procedure, we have been able to assay unambiguously five SNPs in a set of 132 varieties of cultivated barley. The results show the reliability of this technique and its potential for use in low- to moderate-throughput situations; the association of agronomically important traits is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.