Recent observation and modeling-based studies have shown how air quality has been positively affected by the containment measures enforced due to the COVID-19 outbreak. This work aims to analyze Lombardy’s NO2 atmospheric concentration during the spring lockdown. The region of Lombardy is known for having the largest number of residents in Italy and high levels of pollution. It is also the region where the first European confinement measures were imposed by the Italian government. The modeling suite composed of CAMx (Comprehensive Air Quality Model with Extensions) and WRF (Weather Research and Forecasting model) provides the setting to compare the atmospheric NO2 concentration from mid-February to the end of March with a business as usual situation. The main interest in this work is to investigate the response of NO2 atmospheric concentration to increasingly reduced road traffic. We can simulate, for the first time, a real circumstance of progressively reduced mobility, as well as validating it with measured air quality data. Focusing on the city of Milan, we found that the decrease in NO2 concentration reflects progressively reduced traffic contraction. In the case of a large traffic abatement (71%), the concentration level is reduced by one third. We also find that industrial activities have a relevant impact on NO2 atmospheric concentration, especially in the provinces of Brescia and Bergamo. This study provides an overview of how incisive policies must be implemented to achieve the set environmental targets and protect human health.
The relentless spread of photovoltaic production drives searches of smart approaches to mitigate unbalances in power demand and supply, instability on the grid and ensuring stable revenues to the producer. Because of the development of energy markets with multiple time sessions, there is a growing need of power forecasting for multiple time steps, from fifteen minutes up to days ahead. To address this issue, in this study both a short-term-horizon of three days and a very-short-term-horizon of three hours photovoltaic production forecasting methods are presented. The short-term is based on a multimodel approach and referred to several configurations of the Analog Ensemble method, using the weather forecast of four numerical weather prediction models. The very-short-term consists of an Auto-Regressive Integrated Moving Average Model with eXogenous input (ARIMAX) that uses the short-term power forecast and the irradiance from satellite elaborations as exogenous variables. The methods, applied for one year to four small-scale grid-connected plants in Italy, have obtained promising improvements with respect to refence methods. The time horizon after which the short-term was able to outperform the very-short-term has also been analyzed. The study also revealed the usefulness of satellite data on cloudiness to properly interpret the results of the performance analysis.
Ground-based radiation measurements are required for all large solar projects and for evaluating the accuracy of solar radiation models and datasets. Ground data almost always contain low-quality periods caused by instrumental issues, logging errors, or maintenance deficiencies. Therefore, quality control (QC) is needed to detect and eventually flag or exclude such suspicious or erroneous data before any subsequent analysis. The few existing automatic QC methods are not perfect, thus expert visual inspection of the data is still required. In this work, we present a harmonized QC procedure, which is a combination of various available methods, including some that include an expert visual inspection. In the framework of IEA PVPS Task 16, these tests are applied to 161 world stations that are equipped with various radiometer models, and are candidates for an ongoing benchmark of irradiance datasets derived from satellite or weather models. Because the implementation of these methods by experts, and their subsequent decisions, might lead to different QC results, the independently obtained results from nine evaluators are compared for two test sites. The QC results are found similar and more stringent than purely automated tests, even though some deviations exist due to differences in manual flagging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.