We evaluated the role of melatonin in endotoxemia caused by lipopolysaccharide (LPS) in unanesthetized rats. The expression of inducible isoform of nitric oxide synthase (iNOS) and the increase in the oxidative stress seem to be responsible for the failure of lungs, liver, and kidneys in endotoxemia. Bacterial LPS (10 mg/kg b. w) was i.v. injected 6 h before rats were killed and melatonin (10-60 mg/kg b.w.) was i.p. injected before and/or after LPS. Endotoxemia was associated with a significant rise in the serum levels of aspartate and alanine aminotransferases, gamma-glutamyl-transferase, alkaline phosphatase, creatinine, urea, and uric acid, and hence liver and renal dysfunction. LPS also increased serum levels of cholesterol and triglycerides and reduced glucose levels. Melatonin administration counteracted these organ and metabolic alterations at doses ranging between 20 and 60 mg/kg b. w. Melatonin significantly decreased lung lipid peroxidation and counteracted the LPS-induced NO levels in lungs and liver. Our results also show an inhibition of iNOS activity in rat lungs by melatonin in a dose-dependent manner. Expression of iNOS mRNA in lungs and liver was significantly decreased by melatonin (60 mg/kg b. w., 58-65%). We conclude that melatonin inhibits NO production mainly by inhibition of iNOS expression. The inhibition of NO levels may account for the protection of the indoleamine against LPS-induced endotoxemia in rats.
Bacteria emit a wealth of volatiles. The combination of coupled gas chromatography/mass spectrometry (GC/MS) and proton-transfer-reaction mass spectrometry (PTR-MS) analyses provided a most comprehensive profile of volatiles of the rhizobacterium Serratia odorifera 4Rx13. An array of compounds, highly dominated by sodorifen (approximately 50%), a bicyclic oligomethyl octadiene, could be detected. Other volatiles included components of the biogeochemical sulfur cycle such as dimethyl disulfide (DMDS), dimethyl trisulfide and methanethiol, terpenoids, 2-phenylethanol, and other aromatic compounds. The composition of the bouquet of S. odorifera did not change significantly during the different growth intervals. At the beginning of the stationary phase, 60 μg of volatiles per 24 h and 60 easily detectable components were released. Ammonia was also released by S. odorifera, while ethylene, nitric oxide (NO) and hydrogen cyanide (HCN) could not be detected. Dual culture assays proved that 20 μmol DMDS and 2.5 μmol ammonia, individually applied, represent the IC(50) concentrations that cause negative effects on Arabidopsis thaliana.
Plants emit various volatile organic compounds (VOCs) upon herbivore attack. These VOC emissions often show temporal dynamics which may influence the behavior of natural enemies using these volatiles as cues. This study analyzes on-line VOC emissions by roots of Brassica nigra plants under attack by cabbage root fly larvae, Delia radicum. Root emitted VOCs were detected using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). These analyses showed that several sulfur containing compounds, such as methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and glucosinolate breakdown products, such as thiocyanates (TC) and isothiocyanates (ITC), were emitted by the roots in response to infestation. The emissions were subdivided into early responses, emerging within 1-6 h after infestation, and late responses, evolving only after 6-12 h. The marker for rapid responses was detected at m/z 60. The ion detected at m/z 60 was identified as thiocyanic acid, which is also a prominent fragment in some TC or ITC spectra. The emission of m/z 60 stopped when the larvae had pupated, which makes it an excellent indicator for actively feeding larvae. Methanethiol, DMS and DMDS levels increased much later in infested roots, indicating that activation of enzymes or genes involved in the production of these compounds may be required. Earlier studies have shown that both early and late responses can play a role in tritrophic interactions associated with Brassica species. Moreover, the identification of these root induced responses will help to design non-invasive analytical procedures to assess root infestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.