Optical Character Recognition (OCR) is the process of identifying and converting texts rendered in images using pixels to a more computer-friendly representation. The presented work aims to prove that the accuracy of the Tesseract 4.0 OCR engine can be further enhanced by employing convolution-based preprocessing using specific kernels. As Tesseract 4.0 has proven great performance when evaluated against a favorable input, its capability of properly detecting and identifying characters in more realistic, unfriendly images is questioned. The article proposes an adaptive image preprocessing step guided by a reinforcement learning model, which attempts to minimize the edit distance between the recognized text and the ground truth. It is shown that this approach can boost the character-level accuracy of Tesseract 4.0 from 0.134 to 0.616 (+359% relative change) and the F1 score from 0.163 to 0.729 (+347% relative change) on a dataset that is considered challenging by its authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.