In the first decade of targeted covalent inhibition, scientists have successfully reversed the previous trend that had impeded the use of covalent inhibition in drug development. Successes in the clinic, mainly in the field of kinase inhibitors, are existing proof that safe covalent inhibitors can be designed and employed to develop effective treatments. The case of KRASG12C covalent inhibitors entering clinical trials in 2019 has been among the hottest topics discussed in drug discovery, raising expectations for the future of the field. In this perspective, an overview of the milestones hit with targeted covalent inhibitors, as well as the promise and the needs of current research, are presented. While recent results have confirmed the potential that was foreseen, many questions remain unexplored in this branch of precision medicine.
All isocitrate dehydrogenase (IDH) mutant solid neoplasms exhibit highly elevated levels of D-2-hydroxyglutarate (D-2HG). Detection of 2HG in tumor tissues currently is performed by gas or liquid chromatography-mass spectrometry (GC- or LC-MS) or biochemical detection. While these methods are highly accurate, a considerable amount of time for tissue preparation and a relatively high amount of tissue is required for testing. We here present a rapid approach to detect 2HG in brain tumor tissue based on matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI-TOF). We analyzed 26 brain tumor samples with known IDH1 or IDH2 mutation and compared readouts to those from 28 brain tumor samples of wildtype IDH status. IDH mutant samples exhibited a clear positive signal for 2HG which was not observed in any of the IDH wildtype tumors. Our analytical pipeline allowed for 2HG detection in less than 5 min. Data were validated by determining 2HG levels in all tissues with a biochemical assay. In conclusion, we developed a protocol for rapid detection of 2HG levels and illustrate the possibility to use MALDI-TOF for the detection of metabolites on frozen tissue sections in a diagnostic setting.Electronic supplementary materialThe online version of this article (10.1186/s40478-018-0523-3) contains supplementary material, which is available to authorized users.
Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease that belongs to the family of tissue kallikreins (KLKs). Many KLKs are investigated as potential biomarkers for cancer as well as therapeutic drug targets for a number of pathologies. KLK6, in particular, has been implicated in neurodegenerative diseases and cancer, but target validation has been hampered by a lack of selective inhibitors. This work introduces a class of depsipeptidic KLK6 inhibitors, discovered via high-throughput screening, which were found to function as substrate mimics that transiently acylate the catalytic serine of KLK6. Detailed structure-activity relationship studies, aided by in silico modeling, uncovered strict structural requirements for potency, stability, and acyl-enzyme complex half-life. An optimized scaffold, DKFZ-251, demonstrated good selectivity for KLK6 compared to other KLKs, and on-target activity in a cellular assay. Moreover, DKFZ-633, an inhibitor-derived activity-based probe, could be used to pull down active endogenous KLK6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.