As the multitude and complexity of cloud market increases the evaluation and selection of cloud services becomes a burdensome task for the users. With the increased rise of available services from various Cloud Service Providers (CSP), the role of cloud brokers becomes more and more important. In this thesis, the challenge of optimally allocating multiple cloud system resources to multiple mobile user’s requests with different requirements is investigated and an optimal Cloud Broker model is proposed. The cloud brokering mechanism is formulated as a Semi-Markov Decision Process (SMDP) model under the average system cost criteria, taking into consideration the cost of the occupying computing resources, the communication costs, the request traffic, and some security risk degrees and resource requirements from the multiple mobile users. Through minimizing the overall system cost, the optimal resource allocation policy is derived by using the Value Iteration Algorithm. Simulation results are provided, demonstrating the efficiency of the proposed Cloud Broker design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.