Summary The thalassemias can be defined as α‐ or β‐thalassemias depending on the defective globin chain and on the underlying molecular defects. The recognition of carriers is possible by hematological tests. Both α‐ and β‐thalassemia carriers (heterozygotes) present with microcytic hypochromic parameters with or without mild anemia. Red cell indices and morphology followed by separation and measurement of Hb fractions are the basis for identification of carriers. In addition, iron status should be ascertained by ferritin or zinc protoporphyrin measurements and the iron/total iron‐binding capacity/saturation index. Mean corpuscular volume and mean corpuscular hemoglobin are markedly reduced (mean corpuscular volume: 60–70 fl; MCH: 19–23 pg) in β‐thalassemia carriers, whereas a slight to relevant reduction is usually observed in α‐carriers. HbA2 determination is the most decisive test for β‐carrier detection although it can be disturbed by the presence of δ‐thalassemia defects. In α‐thalassemia, HbA2 can be lower than normal and it assumes significant value when iron deficiency is excluded. Several algorithms have been introduced to discriminate from thalassemia carriers and subjects with iron‐deficient anemia; because the only discriminating parameter is the red cell counts, these formulas must be used consciously. Molecular analysis is not required to confirm the diagnosis of β‐carrier, but it is necessary to confirm the α‐thalassemia carrier status. The molecular diagnosis is essential to predict severe transfusion‐dependent and intermediate‐to‐mild non‐transfusion‐dependent cases. DNA analysis on chorionic villi is the approach for prenatal diagnosis and the methods are the same used for mutations detection, according to the laboratory facilities and expertise.
Congenital erythropoietic porphyria (CEP) is a rare genetic disease resulting from the remarkable deficient activity of uroporphyrinogen III synthase, the fourth enzyme of the haem biosynthetic pathway. This enzyme defect results in overproduction of the non-physiological and pathogenic porphyrin isomers, uroporphyrin I and coproporphyrin I. The predominant clinical characteristics of CEP include bullous cutaneous photosensitivity to visible light from early infancy, progressive photomutilation and chronic haemolytic anaemia. The severity of clinical manifestations is markedly heterogeneous among patients; and interdependence between disease severity and porphyrin amount in the tissues has been pointed out. A more pronounced endogenous production of porphyrins concomitant to activation of ALAS2, the first and rate-limiting of the haem synthesis enzymes in erythroid cells, has also been reported. CEP is inherited as autosomal recessive or X-linked trait due to mutations in UROS or GATA1 genes; however an involvement of other causative or modifier genes cannot be ruled out.
Porphyrias are a group of diseases that are clinically and genetically heterogeneous and originate mostly from inherited dysfunctions of specific enzymes involved in heme biosynthesis. Such dysfunctions result in the excessive production and excretion of the intermediates of the heme biosynthesis pathway in the blood, urine, or feces, and these intermediates are responsible for specific clinical presentations. Porphyrias continue to be underdiagnosed, although laboratory diagnosis based on the measurement of metabolites could be utilized to support clinical suspicion in all symptomatic patients. Moreover, the measurement of enzymatic activities along with a molecular analysis may confirm the diagnosis and are, therefore, crucial for identifying pre-symptomatic carriers. The present review provides an overview of the laboratory assays used most commonly for establishing the diagnosis of porphyria. This would assist the clinicians in prescribing appropriate diagnostic testing and interpreting the testing results.
Porphyrias are a group of eight rare inherited metabolic disorders of heme biosynthesis pathway. Porphyrias are still underdiagnosed, although examinations of urine and plasma are first-line tests for detecting excess of porphyrins or heme precursors in suspected patients. Diagnosis, particularly for the acute forms, is essential to avoid precipitating factors and the use of triggering drugs. Mutation screening of family members is recommended to identify presymptomatic carriers and to prevent acute attacks. The therapeutic approach should be appropriate regarding specific forms of porphyria and treatment should be started promptly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.