Because RNA lacks strong intrinsic fluorescence, it has proven challenging to track RNA molecules in real time. To address this problem and to allow the purification of fluorescently tagged RNA complexes, we have selected a high affinity RNA aptamer called RNA Mango. This aptamer binds a series of thiazole orange (fluorophore) derivatives with nanomolar affinity, while increasing fluorophore fluorescence by up to 1,100-fold. Visualization of RNA Mango by single-molecule fluorescence microscopy, together with injection and imaging of RNA Mango/fluorophore complex in C. elegans gonads demonstrates the potential for live-cell RNA imaging with this system. By inserting RNA Mango into a stem loop of the bacterial 6S RNA and biotinylating the fluorophore, we demonstrate that the aptamer can be used to simultaneously fluorescently label and purify biologically important RNAs. The high affinity and fluorescent properties of RNA Mango are therefore expected to simplify the study of RNA complexes.
The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, ∼21-and ∼24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/.[Supplemental material is available online at www.genome.org.] . The heterochromatin siRNAs are a diverse set of 24-nt-long small RNAs that are processed by DCL3 from double-stranded RNA precursors produced by RDR2 (Xie et al. 2004). These RNAs are involved in heterochromatin formation and maintenance by directing sequencespecific DNA and histone methylation of transposable elements and some larger genomic loci (Pontier et al. 2005). Other 24-nt long siRNAs produced by DCL2 in A. thaliana can direct an initial cleavage of target transcripts, which are further cleaved into 21-nt siRNAs by DCL1 (Borsani et al. 2005). Finally, the trans-acting siRNAs (tasiRNAs), which are 21 nt long, are matured by a poorly understood mechanism involving DCL4. These tasiRNAs perform post-transcriptional gene silencing much like the miRNAs (Xie et al. 2004).Identification of functional small RNAs in other plant species has, until recently, been accomplished by searching for homologous sequences in expressed sequence data (Zhang et al. 2006a) and genomic sequences (Bonnet et al. 2004) and has been, with a few exceptions (Williams et al. 2005; TalmorNeiman et al. 2006), limited to the discovery of the more highly cons...
Several turn-on RNA aptamers that activate small molecule fluorophores have been selected in vitro. Among these, the ~30 nucleotide Mango-III is notable because it binds the thiazole orange derivative TO1-Biotin with high affinity and fluoresces brightly (quantum yield 0.55). Uniquely among related aptamers, Mango-III exhibits biphasic thermal melting, characteristic of molecules with tertiary structure. We report crystal structures of TO1-Biotin complexes of Mango-III, a structure-guided mutant Mango-III(A10U), and a functionally reselected mutant iMango-III. The structures reveal a globular architecture arising from an unprecedented pseudoknot-like connectivity between a G-quadruplex and an embedded non-canonical duplex. The fluorophore is restrained into a planar conformation by the G-quadruplex, a lone, long-range trans-Watson-Crick pair (whose A10U mutation increases quantum yield to 0.66), and a pyrimidine perpendicular to
Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an unexpected phylogenetic difference in the size distribution of small RNAs among the vascular plants. By extracting total RNA from freshly growing shoot tissue, we conducted a survey of small RNAs in 24 vascular plant species. We find that conifers, which radiated from the other seed-bearing plants ;260 million years ago, fail to produce significant amounts of 24-nucleotide (nt) RNAs that are known to guide DNA methylation and heterochromatin formation in angiosperms. Instead, they synthesize a diverse population of small RNAs that are exactly 21-nt long. This finding was confirmed by high-throughput sequencing of the small RNA sequences from a conifer, Pinus contorta. A conifer EST search revealed the presence of a novel Dicer-like (DCL) family, which may be responsible for the observed change in small RNA expression. No evidence for DCL3, an enzyme that matures 24-nt RNAs in angiosperms, was found. We hypothesize that the diverse class of 21-nt RNAs found in conifers may help to maintain organization of their unusually large genomes.
Why image RNA? Of all the biological molecules, RNA exhibits the most diverse range of functions. Evidence suggests that transcription produces a wide range of noncoding RNAs (ncRNAs), both short (e.g., siRNAs, miRNAs) and long (e.g., telomeric RNAs) that regulate many aspects of gene expression, including the epigenetic processes that underlie cell fate determination, polarization, and morphogenesis. All these functions are realized through the exquisite temporal and spatial control of RNA expression levels and the stability of specific RNAs within well-defined sub-cellular compartments. Given the central importance of RNA in dictating cell behavior via gene-related functions, there is a great demand for RNA imaging methods so as to determine the composition of the cellular 'transcriptome' and to acquire a complete spatial-temporal profile of RNA localization. Recent advances in fluorophore-binding RNA aptamers promise to provide exactly this knowledge, which can ultimately advance our understanding of cell function and behavior in conditions of health and disease, and in response to external stimuli. WIREs RNA 2016, 7:843-851. doi: 10.1002/wrna.1383 For further resources related to this article, please visit the WIREs website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.