Background: During spinal cord development, expression of chicken SEMAPHORIN6A (SEMA6A) is almost exclusively found in the boundary caps at the ventral motor axon exit point and at the dorsal root entry site. The boundary cap cells are derived from a population of late migrating neural crest cells. They form a transient structure at the transition zone between the peripheral nervous system (PNS) and the central nervous system (CNS). Ablation of the boundary cap resulted in emigration of motoneurons from the ventral spinal cord along the ventral roots. Based on its very restricted expression in boundary cap cells, we tested for a role of Sema6A as a gate keeper between the CNS and the PNS.
Seminal fluid elicits a variety of physiological and behavioral changes in insect females. In Drosophila melanogaster females, sex peptide (SP) is the major seminal agent eliciting oviposition and reduction of receptivity. But SP also has many other effects; for example, it stimulates food intake, egg production, ovulation, juvenile hormone production and antimicrobial peptide synthesis. Thus, SP very probably has several receptors. To identify putative targets and signaling cascades, we studied the genome-wide regulation of genes by microarray analysis of RNA isolated from females after mating with wild-type males or males lacking SP, respectively. In addition, we studied the effects of SP on the proteome of females. Sex peptide regulates gene activity differentially in the head and in the abdomen. Genes coding for unspecific antimicrobial peptides are specifically transcribed in the abdomen, e.g. the antimicrobial peptide drosocin in epithelial tissues of the female genital tract (oviduct and calyx). Hence, SP elicits a systemic [Peng J, Zipperlen P & Kubli E (2005) Curr Biol15, 1690-1694] and an epithelial immune response. Ectopic expression of SP in the fat body of transgenic virgin females (with subsequent secretion into the hemolymph) does not elicit drosocin synthesis in the genital tract. Thus, the receptors for the stimulation of the systemic and the epithelial responses by SP are compartmentalized. The hydroxyproline (P*) motif of SP, P*TKFP*IP*SP*NP*, is identified as a novel elicitor of the innate immune response. We suggest that SP acts by chemical mimicry of sugar components of the bacterial cell wall. Thus, SP may induce the immune system via pattern recognition receptors.
Axon guidance at choice points depends on the precise regulation of guidance receptors on the growth cone surface. Upon arrival at the intermediate target or choice point, a switch from attraction to repulsion is required for the axon to move on. Dorsal commissural (dI1) axons crossing the ventral midline of the spinal cord in the floor plate represent a convenient model for the analysis of the molecular mechanism underlying the switch in axonal behavior. We identified in chick a role for calsyntenin 1 in the regulation of vesicular trafficking of guidance receptors in dI1 axons at choice points. In cooperation with RabGDI, calsyntenin 1 shuttles Rab11-positive vesicles containing Robo1 to the growth cone surface in a precisely regulated manner. By contrast, calsyntenin 1-mediated trafficking of frizzled 3, a guidance receptor in the Wnt pathway, is independent of RabGDI. Thus, tightly regulated insertion of guidance receptors, which is required for midline crossing and the subsequent turn into the longitudinal axis, is achieved by specific trafficking.
Mating and immunity are two major components of fitness and links between them have been demonstrated in a number of recent investigations. In Drosophila melanogaster, a seminal fluid protein, sex-peptide (SP), up-regulates a number of antimicrobial peptide (AMP) genes in females after mating but the resulting effect on pathogen resistance is unclear. In this study, we tested (1) whether SP-induced changes in gene expression affect the ability of females to kill injected non-pathogenic bacteria and (2) how the injection process per se affects the expression of AMP genes relative to SP. The ability of virgin females and females mated to SP lacking or control males to clear bacteria was assayed using an established technique in which Escherichia coli are injected directly into the fly body and the rate of clearance of the injected bacteria is determined. We found no repeatable differences in clearance rates between virgin females and females mated to SP producing or SP lacking males. However, we found that the piercing of the integument, as occurs during injection, up-regulates AMP gene expression much more strongly than SP. Thus, assays that involve piercing, which are commonly used in immunity studies, can mask more subtle and biologically relevant changes in immunity, such as those induced by mating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.