In periprosthesis tissues, Staphylococcus epidermidis produces extracellular polysaccharide slime. Recently it has been shown that S. aureus also produces slime and that both S. epidermidis and S. aureus contain the ica operon responsible for slime production. In the operon, icaA encodes for N-acetylglutaminyltransferase, the enzyme for polysaccharide synthesis. However, co-expression of icaA and icaD is required for full slime synthesis. The slime-producing strains of both S. epidermidis and S. aureus are more virulent and are responsible for severe postsurgical or periprosthesis infections. The authors describe a simple, rapid, and reliable polymerase chain reaction method to detect icaA and icaD. The method was applied to the detection of ica genes on two reference strains, 15 strains each of S. epidermidis and S. aureus from periprosthesis infections and 10 strains from the skin and mucosa of healthy volunteers. icaA and icaD were detectable only in slime-producing strains (tested for slime production on Congo Red agar), and never in nonslime-producing ones. This method is a straightforward way of detecting the slime-producing ability by S. epidermidis and S. aureus. In clinical specimens this polymerase chain reaction method enables rapid diagnosis of virulent slime-producing strains with respect to the traditional culture method on Congo Red agar, which requires much more time. Rapid identification of the virulent properties of the bacterial strain responsible for a staphylococcal infection is crucial for deciding treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.