An electrochemical RNA aptamer-based biosensor for rapid and label-free detection of the bronchodilator theophylline was developed. The 5'-disulfide-functionalized end of the RNA aptamer sequence was immobilized on a gold electrode, and the 3'-amino-functionalized end was conjugated with a ferrocene (Fc) redox probe. Upon binding of theophylline the aptamer switches conformation from an open unfolded state to a closed hairpin-type conformation, resulting in the increased electron-transfer efficiency between Fc and the electrode. The electrochemical response, which was measured by differential pulse voltammetry, reaches saturation within a few minutes after addition of theophylline, and the dynamic range for detecting theophylline is 0.2-10 muM. The electrode displays an inhibited response when applied directly in serum samples treated with RNase inhibitors; however a full response to the theophylline serum concentration was obtained by transferring the electrode to blank serum-free buffer solutions. It was demonstrated that theophylline is detected with high selectivity in the presence of caffeine and theobromine.
A simple and robust "off-on" signaling genosensor platform with improved selectivity for single-nucleotide polymorphism (SNP) detection based on the electronic DNA hairpin molecular beacons has been developed. The DNA beacons were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 3'-end, while the 5'-end was labeled with a methylene blue (MB) redox probe. A typical "on-off" change of the electrochemical signal was observed upon hybridization of the 27-33 nucleotide (nt) long hairpin DNA to the target DNA, in agreement with all the hitherto published data. Truncation of the DNA hairpin beacons down to 20 nts provided improved genosensor selectivity for SNP and allowed switching of the electrochemical genosensor response from the on-off to the off-on mode. Switching was consistent with the variation in the mechanism of the electron transfer reaction between the electrode and the MB redox label, for the folded beacon being characteristic of the electrochemistry of adsorbed species, while for the "open" duplex structure being formally controlled by the diffusion of the redox label within the adsorbate layer. The relative current intensities of both processes were governed by the length of the formed DNA duplex, potential scan rate, and apparent diffusion coefficient of the redox species. The off-on genosensor design used for detection of a cancer biomarker TP53 gene sequence favored discrimination between the healthy and SNP-containing DNA sequences, which was particularly pronounced at short hybridization times.
The electrodeposition method was used for modification of a nanostructured hematite photoanode with Ti and Zn to improve the photoelectrocatalytic performance of hematite in the water splitting reaction. The photoelectrocatalytic activity of the hematite electrodes modified with Ti 4+ and Zn 2+ was optimized through the controlled variation of the dopant ion concentration in the electrodeposition solution. Under optimized conditions, for standard illumination of AM 1.5G (100 mW cm −2 ), the photocurrent density at the Ti/Zn-modified hematite anode reached 1.5 mA cm −2 at 1.23 V vs RHE that was 2.5-times higher than that observed with the pristine hematite electrode, the photoelectrocatalysis onset potential being 63 mV reduced. Effects of Ti and Zn doping on the photoelectrochemical activity of pristine hematite were studied by scanning electron microscopy, UV−vis spectroscopy, elemental analysis, and electrochemical impedance spectroscopy. On the basis of the obtained results, the improved performance of the Ti/Zn-modified hematite stemmed from the combination of the enhanced electrical conductivity along with the facilitated charge transport in the bulk phase and at the surface of hematite. The effect of Zn-doping decreasing the overpotential of the reaction by 218 mV (solely Zn-doped compared to that of the pristine hematite) was correlated with the Zn contribution to the interfacial catalysis of water oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.