Referring to specific skeletal muscle proteins, results showed short-term stabilities for just a minority of analyzed proteins, while the majority of investigated proteins displayed characteristics as long-term markers. Due to specific patterns and the possibility to determine definite constraints of the presence, absence, or pattern alterations of single proteins, the feasibility of porcine skeletal muscle as forensic model tissue is outlined and the potential of skeletal muscle as forensic model tissue is underlined, especially with respect to later postmortem phases, which so far lack feasible methods to delimitate the time since death.
BackgroundThe aim of this study was to develop a minimal invasive complete spinal cord injury (SCI) minipig model for future research applications. The minipig is considered a translationally relevant model for SCI research. However, a standardized minimal invasive complete SCI model for pigs has not yet been established.MethodsAdult Göttingen minipigs were anesthetized and placed in extended prone position. After initial computed tomography (CT) scan, the skin was incised, a needle placed in the epidural fatty tissue. Using the Seldinger technique, a guidewire and dilators were introduced to insert the balloon catheter to Th12. After confirmation of the level Th11/Th12, the balloon was inflated to 2 atm for 30 min. The severity of the lesion was followed by CT and by MRI, and by immunohistochemistry. Function was assessed at the motor and sensory level.ResultsDuration of procedure was about 60 min including the 30-min compression time. The balloon pressure of 2 atm was maintained without losses. The lesion site was clearly discernible and no intradural bleeding was observed by CT. Neurological assessments during the 4-month follow-up time showed consistent, predictable, and stable neurological deficits. Magnetic resonance imaging analyses at 6 h and 4 weeks post SCI with final immunohistochemical analyses of spinal cord tissue underlined the neurological outcomes and proved SCI completeness.ConclusionsWe have established a new, minimal invasive, highly standardized, CT-guided spinal cord injury procedure for minipigs. All risks of the open surgery can be excluded using this technique. This CT-guided SC compression is an excellent technique as it avoids long surgery and extensive trauma and allows a feasible inter-animal comparison.
PurposeThe aim of this study was to determine the structural changes of the urinary bladder after chronic spinal cord injury (SCI) in minipigs with the primary focus on the analysis of urinary bladder wall proteins and their quantitative distribution.MethodsSeven Göttingen minipigs (adult, female) underwent a complete spinal cord transection. Follow-up time was 4 months during which the bladder was drained by frequent single catheterisation and data from the bladder diary and daily urine strip test were collected. Samples from the urinary bladder were taken, fixed in 4% paraformaldehyde and stained for histological analyses. Bladder wall thickness, single tissue quantities/distributions, types I and III collagen, and elastin quantifications were performed. Comparisons to healthy urinary bladder tissue of age-matched minipigs were performed for statistical analyses.ResultsNo urinary tract infections were observed in our SCI minipig collective during follow-up. A trend towards a reduction in bladder volumes and an increase in incontinence periods were seen. The bladder wall thickness significantly increased after chronic SCI. Furthermore, bladder wall composition was severely altered by a significant loss of smooth muscle tissue and a significant increase in connective tissue. Elastic fibres were reduced in number and altered in their structural appearance after SCI. Type I collagen was significantly increased, while type III collagen was significantly decreased after SCI.ConclusionsChronic SCI highlighted that the urinary bladder wall undergoes fibrotic events with reduced contractile and elastic properties due to changes of the bladder wall protein composition. These changes show in detail how SCI severely influences the urinary bladder wall composition and depicts the similarities between minipigs and humans.
Lower urinary tract function is mainly assessed by means of cystometric bladder function analysis in rodents. Conventional cystometries are usually performed as terminal analysis under urethane anesthesia. It is well known that anesthetic drugs can influence bladder function. Hence, the aim of this technique is to perform cystometric measurements of the urinary bladder and external urethral sphincter in lightly restrained awake rats. For this purpose, a bladder catheter is implanted into the bladder dome. Subsequently, two electrodes are implanted bilateral to the external urethral sphincter and a ground electrode is sutured to a non-responsive skeletal muscle. The bladder catheter and the three electrodes are finally tunneled subcutaneously to the neck region and affixed to a harness. With this technique, the lower urinary tract can be measured at multiple time points in the same animal to assess lower urinary tract function. The main application of this technique is the follow-up of simultaneous urinary bladder and external urethral sphincter function in awake healthy rats and after induction of a disease or injury. Moreover, subsequent lower urinary tract monitoring can be performed during evaluation of the disease/injury and to monitor treatment efficacy.
AIMS:The aim was to develop a new laparoscopic technique for placement of a pudendal lead. METHODS: Development of a direct, feasible and reliable minimal-invasive laparoscopic approach to the pudendal nerve (PN). Thirty-one embalmed human specimens were dissected for the relevant anatomic structures of the pelvis.Stepby-step documentation and analysis of the laparoscopic approach in order to locate the PN directly in its course around the medial part of the sacrospinous ligament and test this approach for feasibility. Landmarks for intraoperative navigation towards the PN as well as the possible position of an lead were selected and demonstrated. RESULTS: The visible medial umbilical fold, the intrapelvine part of the internal pudendal artery, the coccygeus muscle and the sacrospinous ligament are the main landmarks. The PN traverses the medial part of the sacrospinous ligament dorsally, medially to the internal pudendal artery. The medial part of the sacrospinous ligament has to be exposed in order to display the nerve. An lead can be placed ventrally on the nerve or around it, depending on the lead type or shape. CONCLUSIONS: A precise and reliable identification of the PN by means of laparoscopy is feasible with an easy four-step approach: (1) identification of the medial umbilical fold; (2) identification of the internal iliac artery; (3) identification of the internal pudendal artery and incision of the coccygeus muscle ('white line', arcuated line); and (4) exposition of the medial part of the sacrospinous ligament to display the PN. K E Y W O R D Sinternal pudendal artery, laparoscopic approach, medial umbilical fold, neuromodulation, pudendal nerve, sacrospinous ligament
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.