Formation of electrical conducting channels with paramagnetic properties on the surface of three type polymer plates (phenol-formaldehyde and epoxy resins, polyacrylonitrile) under influence of CO2 laser irradiation at the presence of air have been studied. It is shown that the magnitude of surface resistance of the investigated polymers depends on polymer type and irradiation energy. The appearance of electrical conducting regions in the polymer materials is due to laser-chemical transformations of macromolecular physical and chemical structures near the polymer plate surfaces, leading to formation of double conjugated bonds. These structures are characterized also with paramagnetic properties- by method of ESR the free radicals are discovered in the transformed regions of polymers. The obtained results practically are analogous to ones obtained in such polymers after thermal treatment at high temperatures. However there are some advantages: in the latter case for obtaining of conducting materials on the base of dielectric polymers it is necessary to use a high vacuum. Besides of such method does not allow the formation of conducting channels with desired square and configuration on the surface of polymer plates in very short time (about several seconds) at present of air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.