Increased levels of apolipoprotein CIII (apoCIII), a key regulator of lipid metabolism, result in obesity-related metabolic derangements. We investigated mechanistically whether lowering or preventing high-fat diet (HFD)–induced increase in apoCIII protects against the detrimental metabolic consequences. Mice, first fed HFD for 10 weeks and thereafter also given an antisense (ASO) to lower apoCIII, already showed reduced levels of apoCIII and metabolic improvements after 4 weeks, despite maintained obesity. Prolonged ASO treatment reversed the metabolic phenotype due to increased lipase activity and receptor-mediated hepatic uptake of lipids. Fatty acids were transferred to the ketogenic pathway, and ketones were used in brown adipose tissue (BAT). This resulted in no fat accumulation and preserved morphology and function of liver and BAT. If ASO treatment started simultaneously with the HFD, mice remained lean and metabolically healthy. Thus, lowering apoCIII protects against and reverses the HFD-induced metabolic phenotype by promoting physiological insulin sensitivity.
Fructose consumption from added sugars correlates with the epidemic rise in obesity, metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. We have investigated whether maternal fructose intake produces subsequent changes in cholesterol metabolism of progeny. Carbohydrates were supplied to pregnant rats in drinking water (10% w/v solution) throughout gestation. Adult male and female descendants from fructose-fed, control or glucose-fed mothers were studied. Male offspring from fructose-fed mothers had elevated plasma HDL-cholesterol levels, whereas female progeny from fructose-fed mothers presented lower levels of non-HDL cholesterol vs. the other two groups. Liver X-receptor (LXR), an important regulator of cholesterol metabolism, and its target genes such as scavenger receptor B1, ATP-binding cassette (ABC)G5 and cholesterol 7-alpha hydroxylase showed decreased gene expression in males from fructose-fed mothers and the opposite in the female progeny. Moreover, the expression of a number of LXRα target genes related to lipogenesis paralleled to that for LXRα expression. In accordance with this, LXRα gene promoter methylation was increased in males from fructose-fed mothers and decreased in the corresponding group of females. Surprisingly, plasma folic acid levels, an important methyl-group donor, were augmented in males from fructose-fed mothers and diminished in female offspring. Maternal fructose intake produces a fetal programming that influences, in a gender-dependent manner, the transcription factor LXRα epigenetically, and both hepatic mRNA gene expression and plasma parameters of cholesterol metabolism in adult progeny. Changes in the LXRα promoter methylation might be related to the availability of the methyl donor folate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.