AlGaN/GaN high electron mobility transistors were irradiated with 60Co gamma-rays to doses up to 1000 Gy, in order to analyze the effects of irradiation on the devices' transport properties. Temperature-dependent electron beam-induced current measurements, conducted on the devices before and after exposure to gamma-irradiation, allowed for the obtaining of activation energies related to radiation-induced defects due to nitrogen vacancies. DC current-voltage measurements were also conducted on the transistors to assess the impact of gamma-irradiation on transfer, gate, and drain characteristics.
The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped b-Ga 2 O 3 vertical Schottky rectifiers was observed for fluences up to 1.43 Â 10 16 cm À2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.
The surface of single-crystal (-201) oriented β-Ga2O3 was etched in BCl3/Ar inductively coupled plasmas under conditions (an excitation frequency of 13.56 MHz, a source power of 400 W, and a dc self-bias of −450 V) that produce removal rates of ∼700 Å min−1. Annealing at 400 and 450 °C was carried out after etching on Ni/Au Schottky diodes formed on the surface either before or after the annealing step. Current–voltage (I–V) measurements were used to extract the Schottky barrier height (Φ), diode ideality factor (n), and reverse breakdown voltage (VRB) for plasma damaged diodes after annealing. Annealing at 450 °C was found to essentially restore the values of Φ, n, and VRB to their reference (unetched) values on samples metallized after etching and annealing. Thermal annealing at either temperature of metallized diodes degraded their reverse breakdown voltage, showing that Ni/Au is not stable on β-Ga2O3 at these temperatures. Photoluminescence revealed a decrease in total emission intensity in the near band-edge region after the introduction of etch damage. Electron beam-induced current measurements showed a decrease in the minority carrier diffusion length from 350 μm in the control sample to 311 μm in the etched sample.
The electrical performance of vertical geometry Ga2O3 rectifiers was measured before and after 10 MeV proton irradiation at a fixed fluence of 1014 cm−2, as well as subsequent annealing up to 450 °C. Point defects introduced by the proton damage create trap states that reduce the carrier concentration in the Ga2O3, with a carrier removal rate of 235.7 cm−1 for protons of this energy. The carrier removal rates under these conditions are comparable to GaN-based films and heterostructures. Even annealing at 300 °C produces a recovery of approximately half of the carriers in the Ga2O3, while annealing at 450 °C almost restores the reverse breakdown voltage. The on/off ratio of the rectifiers was severely degraded by proton damage and this was only partially recovered by 450 °C annealing. The minority carrier diffusion length decreased from ∼340 nm in the starting material to ∼315 nm after the proton irradiation. The reverse recovery characteristics showed little change with values in the range 20–30 ns before and after proton irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.