Background A complex interplay between chromatin and topological machineries is critical for genome architecture and function. However, little is known about these reciprocal interactions, even for cohesin, despite its multiple roles in DNA metabolism. Results We have used genome-wide analyses to address how cohesins and chromatin structure impact each other in yeast. Cohesin inactivation in scc1 - 73 mutants during the S and G2 phases causes specific changes in chromatin structure that preferentially take place at promoters; these changes include a significant increase in the occupancy of the − 1 and + 1 nucleosomes. In addition, cohesins play a major role in transcription regulation that is associated with specific promoter chromatin architecture. In scc1 - 73 cells, downregulated genes are enriched in promoters with short or no nucleosome-free region (NFR) and a fragile “nucleosome − 1/RSC complex” particle. These results, together with a preferential increase in the occupancy of nucleosome − 1 of these genes, suggest that cohesins promote transcription activation by helping RSC to form the NFR. In sharp contrast, the scc1 - 73 upregulated genes are enriched in promoters with an “open” chromatin structure and are mostly at cohesin-enriched regions, suggesting that a local accumulation of cohesins might help to inhibit transcription. On the other hand, a dramatic loss of chromatin integrity by histone depletion during DNA replication has a moderate effect on the accumulation and distribution of cohesin peaks along the genome. Conclusions Our analyses of the interplay between chromatin integrity and cohesin activity suggest that cohesins play a major role in transcription regulation, which is associated with specific chromatin architecture and cohesin-mediated nucleosome alterations of the regulated promoters. In contrast, chromatin integrity plays only a minor role in the binding and distribution of cohesins. Electronic supplementary material The online version of this article (10.1186/s13072-019-0293-6) contains supplementary material, which is available to authorized users.
Tudor domain containing protein 9 (TDRD9) is a RNA helicase normally expressed in the germline, where it is involved in the biosynthesis of PIWI-interacting RNAs (piRNAs). Here, we show that TDRD9 is highly expressed in a subset of non-small cell lung carcinomas and derived cell lines by hypomethylation of its CpG island. Furthermore, TDRD9 expression is associated with poor prognosis in lung adenocarcinoma. We find that downregulation of TDRD9 expression in TDRD9-positive cell lines causes a decrease in cell proliferation, S-phase cell cycle arrest, and apoptosis. Transcriptomic analysis demonstrated that TDRD9 knockdown causes upregulation of cell cycle and DNA repair genes. We also observed that TDRD9 knockdown triggers activation of the catalytic subunit of the DNA dependent protein kinase (DNA-PKcs) and phosphorylation of H2A.X, which are indicative of an increase of DNA double strand breaks. TDRD9-silenced cells also presented aberrant mitosis and abnormal-shaped nuclei indicating defects in chromosomal segregation. Finally, TDRD9 silencing caused hypersensitivity to the replication stress inducer aphidicolin, while overexpression of the protein increased resistance to the drug, suggesting that TDRD9 protects from replicative stress to TDRD9-positive tumor cells. Thus, our results place TDRD9 as a marker for prognosis and as a potential therapeutic target in a subset of lung carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.