Levels of dlk, an EGF-like homeotic protein, are critical for several differentiation processes. Because growth and differentiation are, in general, exclusive of each other, and increasing evidence indicates that Dlk1 expression changes in tumorigenic processes, we studied whether dlk could also affect cell growth. We found that, in response to glucocorticoids, Balb/c 3T3 cells with diminished levels of dlk expression develop foci-like cells that have lost contact inhibition, display altered morphology, and grow faster than control cell lines. Balb/c 3T3 cells spontaneously growing more rapidly are also dlk-negative cells. Moreover, screening by the yeast two-hybrid system, using Dlk1 constructs as baits, resulted in the isolation of GAS1 and acrogranin cDNAs. Interestingly, these proteins are cysteine-rich molecules involved in the control of cell growth. Taken together, these observations suggest that dlk may participate in a network of interactions controlling how the cells respond to growth or differentiation signals.
Hematopoietic progenitor cells die by apoptosis after removal of the appropriate colony-stimulating factor (CSF). Recent pharmacologic data have implicated protein kinase C (PKC) in the suppression of apoptosis in interleukin-3 (IL-3) and granulocyte-macrophage (GM)-CSF–dependent human myeloid cells. Because IL-3 and GM-CSF induce increases in diacylglycerol without mobilizing intracellular Ca++, it seemed that one of the novel Ca++ independent isoforms of PKC was involved. We report here that overexpression of PKC in factor-dependent human TF-1 cells extends cell survival in the absence of cytokine. Overexpression of PKCδ does not have this effect. By 72 to 96 hours after cytokine withdrawal, the PKC transfectants remain distributed in all phases of the cell cycle, as shown by fluorescence-activated cell sorting (FACS) analysis, while little intact cellular DNA is detectable in vector or PKCδ transfectants. PKC induces bcl-2 protein expression fivefold to sixfold over the levels in empty vector transfectants, whereas the levels in PKCδ transfectants are similar to those in vector controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.