Computational electromagnetic problems require evaluating the electric and magnetic fields of the physical object under investigation, divided into elementary cells with a mesh. The partial element equivalent circuit (PEEC) method has recently received attention from academic and industry communities because it provides a circuit representation of the electromagnetic problem. The surface formulation, known as S-PEEC, requires computing quadruple integrals for each mesh patch. Several techniques have been developed to simplify the computational complexity of quadruple integrals but limited to triangular meshes as used in well-known methods such as the Method of Moments (MoM). However, in the S-PEEC method, the mesh can be rectangular and orthogonal, and new approaches must be investigated to simplify the quadruple integrals. This work proposes a numerical approach that treats the singularity and reduces the computational complexity of one of the two quadruple integrals used in the S-PEEC method. The accuracy and computational time are tested for representative parallel and orthogonal meshes.✩ This document is the results of the research project funded by the Swedish Research Council, grant no. 2018-05252.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.