Guanylate-binding protein (GBP) 5 is an interferon (IFN)-inducible cellular factor reducing HIV-1 infectivity by an incompletely understood mechanism. Here, we show that this activity is shared by GBP2, but not by other members of the human GBP family. GBP2/5 decrease the activity of the cellular proprotein convertase furin, which mediates conversion of the HIV-1 envelope protein (Env) precursor gp160 into mature gp120 and gp41. Because this process primes HIV-1 Env for membrane fusion, viral particles produced in the presence of GBP2/5 are poorly infectious due to increased incorporation of nonfunctional gp160. Furin activity is critical for the processing of envelope glycoproteins of many viral pathogens. Consistently, GBP2/5 also inhibit Zika, measles, and influenza A virus replication and decrease infectivity of viral particles carrying glycoproteins of Marburg and murine leukemia viruses. Collectively, our results show that GPB2/5 exert broad antiviral activity by suppressing the activity of the virus-dependency factor furin.
The HIV accessory protein Nef counteracts immune defenses by subverting coated vesicle pathways. The 3.7 Å cryo-EM structure of a closed trimer of the clathrin adaptor AP-1, the small GTPase Arf1, HIV-1 Nef, and the cytosolic tail of the restriction factor tetherin suggested a mechanism for inactivating tetherin by Golgi retention. The 4.3 Å structure of a mutant Nef-induced dimer of AP-1 showed how the closed trimer is regulated by the dileucine loop of Nef. HDX-MS and mutational analysis were used to show how cargo dynamics leads to alternative Arf1 trimerization, directing Nef targets to be either retained at the trans-Golgi or sorted to lysosomes. Phosphorylation of the NL4-3 M-Nef was shown to regulate AP-1 trimerization, explaining how O-Nefs lacking this phosphosite counteract tetherin but most M-Nefs do not. These observations show how the higher-order organization of a vesicular coat can be allosterically modulated to direct cargoes to distinct fates.
CpG dinucleotide suppression has been reported to allow HIV-1 to evade inhibition by the zinc-finger antiviral protein (ZAP). Here, we show that primate lentiviruses display marked differences in CpG frequencies across their genome, ranging from 0.44% in simian immunodeficiency virus SIVwrc from Western red colobus to 2.3% in SIVmon infecting mona monkeys. Moreover, functional analyses of a large panel of human and simian immunodeficiency viruses revealed that the magnitude of CpG suppression does not correlate with their susceptibility to ZAP. However, we found that the number of CpG dinucleotides within a region of ∼700 bases at the 5′ end of the env gene determines ZAP sensitivity of primary HIV-1 strains but not of HIV-2. Increased numbers of CpGs in this region were associated with reduced env mRNA expression and viral protein production. ZAP sensitivity profiles of chimeric simian-human immunodeficiency viruses (SHIVs) expressing different HIV-1 env genes were highly similar to those of the corresponding HIV-1 strains. The frequency of CpGs in the identified env region correlated with differences in clinical progression rates. Thus, the CpG frequency in a specific part of env, rather than the overall genomic CpG content, governs the susceptibility of HIV-1 to ZAP and might affect viral pathogenicity in vivo. IMPORTANCE Evasion of the zinc-finger antiviral protein (ZAP) may drive CpG dinucleotide suppression in HIV-1 and many other viral pathogens but the viral determinants of ZAP sensitivity are poorly defined. Here, we examined CpG suppression and ZAP sensitivity in a large number of primate lentiviruses and demonstrate that their genomic frequency of CpGs varies substantially and does not correlate with ZAP sensitivity. We further show that the number of CpG residues in a defined region at the 5′ end of the env gene together with structural features plays a key role in HIV-1 susceptibility to ZAP and correlates with differences in clinical progression rates in HIV-1-infected individuals. Our identification of a specific part of env as a major determinant of HIV-1 susceptibility to ZAP restriction provides a basis for future studies of the underlying inhibitory mechanisms and their potential relevance in the pathogenesis of AIDS.
Tetherin is an interferon-inducible restriction factor targeting a broad range of enveloped viruses. Its antiviral activity depends on an unusual topology comprising an N-terminal transmembrane domain (TMD) followed by an extracellular coiled-coil region and a C-terminal glycosylphosphatidylinositol (GPI) anchor. One of the two membrane anchors is inserted into assembling virions, while the other remains in the plasma membrane of the infected cell. Thus, tetherin entraps budding viruses by physically bridging viral and cellular membranes. Although tetherin restricts the release of a large variety of diverse human and animal viruses, only mammalian orthologs have been described to date. Here, we examined the evolutionary origin of this protein and demonstrate that tetherin orthologs are also found in fish, reptiles, and birds. Notably, alligator tetherin efficiently blocks the release of retroviral particles. Thus, tetherin emerged early during vertebrate evolution and acquired its antiviral activity before the mammal/reptile divergence. Although there is only limited sequence homology, all orthologs share the typical topology. Two unrelated proteins of the slime mold Dictyostelium discoideum also adopt a tetherin-like configuration with an N-terminal TMD and a C-terminal GPI anchor. However, these proteins showed no evidence for convergent evolution and failed to inhibit virion release. In summary, our findings demonstrate that tetherin emerged at least 450 million years ago and is more widespread than previously anticipated. The early evolution of antiviral activity together with the high topology conservation but low sequence homology suggests that restriction of virus release is the primary function of tetherin. IMPORTANCEThe continuous arms race with viruses has driven the evolution of a variety of cell-intrinsic immunity factors that inhibit different steps of the viral replication cycle. One of these restriction factors, tetherin, inhibits the release of newly formed progeny virions from infected cells. Although tetherin targets a broad range of enveloped viruses, including retro-, filo-, herpes-, and arenaviruses, the evolutionary origin of this restriction factor and its antiviral activity remained obscure. Here, we examined diverse vertebrate genomes for genes encoding cellular proteins that share with tetherin the highly unusual combination of an N-terminal transmembrane domain and a C-terminal glycosylphosphatidylinositol anchor. We show that tetherin orthologs are found in fish, reptiles, and birds and demonstrate that alligator tetherin efficiently inhibits the release of retroviral particles. Our findings identify tetherin as an evolutionarily ancient restriction factor and provide new important insights into the continuous arms race between viruses and their hosts.
Highlights d Cryo-EM structure of AP-2, simian tetherin, and SIVsmm Nef complex at a 3.8-Å resolution d Nef refolds the b2 subunit of AP-2 for binding of the simian tetherin DIWK sequence d Tetherin binding site is distinct from those of Nef substrates MHC class I, CD3, and CD4 d Tetherin binding site on Nef overlaps with the site for SERINC5 binding
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.