A new modular approach to the smallest substituted cycloparaphenylenes (CPPs) is presented. This versatile method permits access to substituted CPPs, choosing the substituent at a late stage of the synthesis. Variously substituted [8]CPPs have been synthesized, and their properties analyzed. The structural characteristics of substituted CPPs are close to those of unsubstituted CPPs. However, their optoelectronic behavior differs remarkably due to the larger torsion angle between the phenyl units.
The replacement of amide bonds in the backbone of peptides by proteolytically stable 1,2,3-triazole isosteres can provide novel peptidomimetics with promising properties for the development of tumor-targeting radiopeptides. On the basis of our previous work with radiolabeled agonistic bombesin (BBN) derivatives of the sequence [Nle(14) ]BBN(7-14), we substituted selected amide bonds of the structurally closely related antagonistic peptide analog JMV594. With the exception of the C-terminal modification, amide-to-triazole substitutions tolerated by [Nle(14) ]BBN(7-14) without loss of biological function led to abolished receptor affinity in the case of JMV594. These findings provide an additional piece of evidence for the currently disputed differences in the modes of action of agonistic and antagonistic gastrin-releasing peptide receptor (GRPR)-targeting radiopeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.