Background: The abrasion behavior of various ceramics is rarely investigated, though it is relevant for the clinical success of such restorations. The aim of this in vivo study was to evaluate the wear of feldspathic-ceramic-veneered zirconium oxide frameworks over a period of at least 10 years.Methods: The abrasion behavior of 15 bridge constructions from 15 different participants was examined after a period of 3, 5, and 10 years using plaster models, which were then subjected to a scanning process on the Atos II industrial scanner and digitized for three-dimensional evaluation of the abrasion by the corresponding software (ATOS Professional 7.6). The individual post-examination models were compared to the baseline model and deviations calculated in the sense of the largest, punctual loss of material in millimeters ("minimal distance"), the average abrasion in millimeters ("mean distance"), and the volume decrease in cubic millimeters ("integrated distance"). Statistical analyses were performed using the Wilcoxon sign rank test or mixed regression models. Multiple testing was considered by Benjamini-Hochberg correction. The significance level was set at 0.05.Results: We found steadily increasing wear of the ceramic. The average volume decrease was significant (P < 0.001) at 3 years and 10 years (-3.25 mm3 and -8.11 mm3, respectively).Conclusions: The results of this study indicate that the rate of volume loss in feldspathic-ceramic-veneered zirconia frameworks in the posterior region increases significantly over time. An increasing frequency of parameters was observed, particularly in the second half of the study period. However, the use of this class of materials can be considered clinically acceptable.This study is registered in DRKS - German Clinical Trials Register with the register number 00021743.
Background: The abrasion behavior of various ceramics is rarely investigated, though it is relevant for the clinical success of such restorations. The aim of this in vivo study was to evaluate the wear of glass-ceramic-veneered zirconium oxide frameworks over a period of at least 10 years.Methods: The abrasion behavior of 15 bridge constructions from 15 different participants was examined after a period of 3, 5, and 10 years using plaster models, which were then subjected to a scanning process on the Atos II industrial scanner and digitized for three-dimensional evaluation of the abrasion by the corresponding software (ATOS Professional 7.6). The individual post-examination models were compared to the baseline model and deviations calculated in the sense of the largest, punctual loss of material in millimeters ("minimal distance"), the average abrasion in millimeters ("mean distance"), and the volume decrease in cubic millimeters ("integrated distance"). Statistical analyses were performed using the Wilcoxon sign rank test or mixed regression models. Multiple testing was considered by Benjamini-Hochberg correction. The significance level was set at 0.05.Results: We found steadily increasing wear of the ceramic. The average volume decrease was significant (P < 0.001) at 3 years and 10 years (-3.25 mm3 and -8.11 mm3, respectively).Conclusions: The results of this study indicate that the rate of volume loss in glass-ceramic-veneered zirconia frameworks in the posterior region increases significantly over time. An increasing frequency of parameters was observed, particularly in the second half of the study period. However, the use of this class of materials can be considered clinically acceptable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.