Increase of energy efficiency and level of information system development of rotor machines in general requires improvement of theoretical approaches to research. In the present paper the problem of high-precision and high-performance computing programs development has been considered to simulate rotor vibrations. Based on two-layer feed-forward neural networks, numerical models have been developed to calculate oil film reaction forces to solve the rotor dynamics problems. Comparison has been done of linear and nonlinear approaches to solution of rotor dynamics problems, and a qualitative evaluation has been presented of accuracy and performance of a neural network approach compared to conventional approaches to rotor dynamics.
The laser speckle contrast imaging allows the determination of the flow motion in a sequence of images. The aim of this study is to combine the speckle contrast imaging and machine learning methods to recognition of physiological fluids flow rate. Data on the flow of intralipid with average flow rate of 0-2 mm/s in a glass capillary were obtained using a developed experimental setup. These data were used to train a feed-forward artificial neural network. The accuracy of random image recognition was quite low due to pulsations and the uneven flow set by the pump. To increase the recognition accuracy, various methods for calculating speckle contrast were used. The best result was obtained when calculating the mean spatial speckle contrast. The application of the mean spatial speckle contrast imaging together with the proposed artificial neural network allowed to increase the fluid flow rate recognition accuracy from about 65 % to 89 % and make it possible to exclude an expert from the data processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.