Atherosclerosis is a progressive disorder of the arterial wall and the underlying cause of cardiovascular diseases such as heart attack and stroke. Today, atherosclerosis is recognized as a complex disease with a strong inflammatory component. The nuclear factor-kappaB (NF-kappaB) signaling pathway regulates inflammatory responses and has been implicated in atherosclerosis. Here, we addressed the function of NF-kappaB signaling in vascular endothelial cells in the pathogenesis of atherosclerosis in vivo. Endothelium-restricted inhibition of NF-kappaB activation, achieved by ablation of NEMO/IKKgamma or expression of dominant-negative IkappaBalpha specifically in endothelial cells, resulted in strongly reduced atherosclerotic plaque formation in ApoE(-/-) mice fed with a cholesterol-rich diet. Inhibition of NF-kappaB abrogated adhesion molecule induction in endothelial cells, impaired macrophage recruitment to atherosclerotic plaques, and reduced expression of cytokines and chemokines in the aorta. Thus, endothelial NF-kappaB signaling orchestrates proinflammatory gene expression at the arterial wall and promotes the pathogenesis of atherosclerosis.
Tumor progression locus-2 (Tpl2) kinase is a major inflammatory mediator in immune cell types recently found to be genetically associated with inflammatory bowel diseases (IBDs). Here we show that Tpl2 may exert a dominant homeostatic rather than inflammatory function in the intestine mediated specifically by subepithelial intestinal myofibroblasts (IMFs). Mice with complete or IMF-specific Tpl2 ablation are highly susceptible to epithelial injury-induced colitis showing impaired compensatory proliferation in crypts and extensive ulcerations without significant changes in inflammatory responses. Following epithelial injury, IMFs sense innate or inflammatory signals and activate, via Tpl2, the cyclooxygenase-2 (Cox-2)-prostaglandin E 2 (PGE 2 ) pathway, which we show here to be essential for the epithelial homeostatic response. Exogenous PGE 2 administration rescues mice with complete or IMF-specific Tpl2 ablation from defects in crypt function and susceptibility to colitis. We also show that Tpl2 expression is decreased in IMFs isolated from the inflamed ileum of IBD patients indicating that Tpl2 function in IMFs may be highly relevant to human disease. The IMF-mediated mechanism we propose also involves the IBD-associated genes IL1R1, MAPK1, and the PGE 2 receptor-encoding PTGER4. Our results establish a previously unidentified myofibroblast-specific innate pathway that regulates intestinal homeostasis and may underlie IBD susceptibility in humans.Crohn's disease | ulcerative colitis | mesenchymal cells | MAP kinases | cyclooxygenase-2
X-rays have an antiangiogenic effect in the chicken embryo chorioallantoic membrane (CAM) model of in vivo angiogenesis. Our study demonstrates that X-rays induce an early apoptosis of CAM cells, modulate the synthesis and deposition of extracellular matrix (ECM) proteins involved in regulating angiogenesis and affect angiogenesis induced by tumour cells implanted onto the CAM. Apoptosis was evident within 1-2 hr, but not later than 6 hr after irradiation. Fibronectin, laminin, collagen type I, integrin ␣ v  3 and MMP-2 protein amounts were all decreased 6 hr after irradiation. In contrast, collagen type IV, which is restricted to basement membrane, was not affected by irradiation of the CAM. There was a similar decrease of gene expression for fibronectin, laminin, collagen type I and MMP-2, 6 hr after irradiation. The levels of mRNA for integrin ␣ v  3 and collagen type IV were unaffected up to 24 hr after irradiation. The decrease in both protein and mRNA levels was reversed at later time points and 48 hr after irradiation, there was a significant increase in the expression of all the genes studied. When C6 glioma tumour cells were implanted on irradiated CAMs, there was a significant increase in the angiogenesis induced by tumour cells, compared to that in non-irradiated CAMs. Therefore, although X-rays have an initial inhibitory effect on angiogenesis, their action on the ECM enhances new vessel formation induced by glioma cells implanted on the tissue.
X-rays have an antiangiogenic effect in the chicken embryo chorioallantoic membrane (CAM) model of in vivo angiogenesis. Our study demonstrates that X-rays induce an early apoptosis of CAM cells, modulate the synthesis and deposition of extracellular matrix (ECM) proteins involved in regulating angiogenesis and affect angiogenesis induced by tumour cells implanted onto the CAM. Apoptosis was evident within 1-2 hr, but not later than 6 hr after irradiation. Fibronectin, laminin, collagen type I, integrin ␣ v  3 and MMP-2 protein amounts were all decreased 6 hr after irradiation. In contrast, collagen type IV, which is restricted to basement membrane, was not affected by irradiation of the CAM. There was a similar decrease of gene expression for fibronectin, laminin, collagen type I and MMP-2, 6 hr after irradiation. The levels of mRNA for integrin ␣ v  3 and collagen type IV were unaffected up to 24 hr after irradiation. The decrease in both protein and mRNA levels was reversed at later time points and 48 hr after irradiation, there was a significant increase in the expression of all the genes studied. When C6 glioma tumour cells were implanted on irradiated CAMs, there was a significant increase in the angiogenesis induced by tumour cells, compared to that in non-irradiated CAMs. Therefore, although X-rays have an initial inhibitory effect on angiogenesis, their action on the ECM enhances new vessel formation induced by glioma cells implanted on the tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.