A high‐resolution gridded daily precipitation data set was combined with a landslide inventory containing over 2000 events in the period 1972–2012 to analyze rainfall thresholds which lead to landsliding in Switzerland. We colocated triggering rainfall to landslides, developed distributions of triggering and nontriggering rainfall event properties, and determined rainfall thresholds and intensity‐duration ID curves and validated their performance. The best predictive performance was obtained by the intensity‐duration ID threshold curve, followed by peak daily intensity Imax and mean event intensity Imean. Event duration by itself had very low predictive power. A single country‐wide threshold of Imax = 28 mm/d was extended into space by regionalization based on surface erodibility and local climate (mean daily precipitation). It was found that wetter local climate and lower erodibility led to significantly higher rainfall thresholds required to trigger landslides. However, we showed that the improvement in model performance due to regionalization was marginal and much lower than what can be achieved by having a high‐quality landslide database. Reference cases in which the landslide locations and timing were randomized and the landslide sample size was reduced showed the sensitivity of the Imax rainfall threshold model. Jack‐knife and cross‐validation experiments demonstrated that the model was robust. The results reported here highlight the potential of using rainfall ID threshold curves and rainfall threshold values for predicting the occurrence of landslides on a country or regional scale with possible applications in landslide warning systems, even with daily data.
Abstract. The prediction of debris flows is relevant because this type of natural hazard can pose a threat to humans and infrastructure. Debris-flow (and landslide) early warning systems often rely on rainfall intensity–duration (ID) thresholds. Multiple competing methods exist for the determination of such ID thresholds but have not been objectively and thoroughly compared at multiple scales, and a validation and uncertainty assessment is often missing in their formulation. As a consequence, updating, interpreting, generalizing and comparing rainfall thresholds is challenging. Using a 17-year record of rainfall and 67 debris flows in a Swiss Alpine catchment (Illgraben), we determined ID thresholds and associated uncertainties as a function of record duration. Furthermore, we compared two methods for rainfall definition based on linear regression and/or true-skill-statistic maximization. The main difference between these approaches and the well-known frequentist method is that non-triggering rainfall events were also considered for obtaining ID-threshold parameters. Depending on the method applied, the ID-threshold parameters and their uncertainties differed significantly. We found that 25 debris flows are sufficient to constrain uncertainties in ID-threshold parameters to ±30 % for our study site. We further demonstrated the change in predictive performance of the two methods if a regional landslide data set with a regional rainfall product was used instead of a local one with local rainfall measurements. Hence, an important finding is that the ideal method for ID-threshold determination depends on the available landslide and rainfall data sets. Furthermore, for the local data set we tested if the ID-threshold performance can be increased by considering other rainfall properties (e.g. antecedent rainfall, maximum intensity) in a multivariate statistical learning algorithm based on decision trees (random forest). The highest predictive power was reached when the peak 30 min rainfall intensity was added to the ID variables, while no improvement was achieved by considering antecedent rainfall for debris-flow predictions in Illgraben. Although the increase in predictive performance with the random forest model over the classical ID threshold was small, such a framework could be valuable for future studies if more predictors are available from measured or modelled data.
Abstract. Rainfall thresholds are a simple and widely used method to forecast landslide occurrence. We provide a comprehensive data-driven assessment of the effects of rainfall temporal resolution (hourly versus daily) on rainfall threshold performance in Switzerland, with sensitivity to two other important aspects which appear in many landslide studies – the normalisation of rainfall, which accounts for local climatology, and the inclusion of antecedent rainfall as a proxy of soil water state prior to landsliding. We use an extensive landslide inventory with over 3800 events and several daily and hourly, station, and gridded rainfall datasets to explore different scenarios of rainfall threshold estimation. Our results show that although hourly rainfall did show the best predictive performance for landslides, daily data were not far behind, and the benefits of hourly resolutions can be masked by the higher uncertainties in threshold estimation connected to using short records. We tested the impact of several typical actions of users, like assigning the nearest rain gauge to a landslide location and filling in unknown timing, and we report their effects on predictive performance. We find that localisation of rainfall thresholds through normalisation compensates for the spatial heterogeneity in rainfall regimes and landslide erosion process rates and is a good alternative to regionalisation. On top of normalisation by mean annual precipitation or a high rainfall quantile, we recommend that non-triggering rainfall be included in rainfall threshold estimation if possible. Finally, while antecedent rainfall threshold approaches used at the local scale are not successful at the regional scale, we demonstrate that there is predictive skill in antecedent rain as a proxy of soil wetness state, despite the large heterogeneity of the study domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.