During the last few years, abandoned object detection has emerged as a hot topic in the video-surveillance community. As a consequence, a myriad of systems has been proposed for automatic monitoring of public and private places, while addressing several challenges affecting detection performance. Due to the complexity of these systems, researchers often address independently the different analysis stages such as foreground segmentation, stationary object detection, and abandonment validation. Despite the improvements achieved for each stage, the advances are rarely applied to the full pipeline, and therefore, the impact of each stage of improvement on the overall system performance has not been studied. In this paper, we formalize the framework employed by systems for abandoned object detection and provide an extensive review of state-of-the-art approaches for each stage. We also build a multi-configuration system allowing one to select a range of alternatives for each stage with the objective of determining the combination achieving the best performance. This multi-configuration is made available online to the research community. We perform an extensive evaluation by gathering a heterogeneous dataset from existing data. Such a dataset allows considering multiple and different scenarios, whereas presenting various challenges such as illumination changes, shadows, and a high density of moving objects, unlike existing literature focusing on a few sequences. The experimental results identify the most effective configurations and highlight design choices favoring robustness to errors. Moreover, we validated such an optimal configuration on additional datasets not previously considered. We conclude the paper by discussing open research challenges arising from the experimental comparison.
Multi-Target Multi-Camera (MTMC) vehicle tracking is an essential task of visual traffic monitoring, one of the main research fields of Intelligent Transportation Systems. Several offline approaches have been proposed to address this task; however, they are not compatible with real-world applications due to their high latency and post-processing requirements. This lack of suitable approaches motivates our proposal: A new low-latency online approach for MTMC tracking in scenarios with partially overlapping fields of view (FOVs), such as road intersections. Firstly, the proposed approach detects vehicles at each camera. Then, the detections are merged between cameras by applying cross-camera clustering based on appearance and location. Lastly, the clusters containing different detections of the same vehicle are temporally associated to compute the tracks on a frame-by-frame basis. The experiments show promising low-latency results while addressing real-world challenges such as the a priori unknown and time-varying number of targets and the continuous state estimation of them without performing any post-processing of the trajectories. Our code is available at http://www-vpu.eps.uam.es/publications/Online-MTMC-Tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.