We compute metric correlations in loop quantum gravity with the dynamics defined by the new spin foam models. The analysis is done at the lowest order in a vertex expansion and at the leading order in a large spin expansion. The result is compared to the graviton propagator of perturbative quantum gravity.Comment: 28 page
In this paper we discuss a proposal of coherent states for Loop Quantum Gravity. These states are labeled by a point in the phase space of General Relativity as captured by a spin-network graph. They are defined as the gauge invariant projection of a product over links of Hall's heat-kernels for the cotangent bundle of SU(2). The labels of the state are written in terms of two unit-vectors, a spin and an angle for each link of the graph. The heat-kernel time is chosen to be a function of the spin. These labels are the ones used in the Spin Foam setting and admit a clear geometric interpretation. Moreover, the set of labels per link can be written as an element of SL(2,C). Therefore, these states coincide with Thiemann's coherent states with the area operator as complexifier. We study the properties of semiclassicality of these states and show that, for large spins, they reproduce a superposition over spins of spin-networks with nodes labeled by Livine-Speziale coherent intertwiners. Moreover, the weight associated to spins on links turns out to be given by a Gaussian times a phase as originally proposed by Rovelli.Comment: 15 page
We study a holomorphic representation for spinfoams. The representation is obtained via the Ashtekar-Lewandowski-Marolf-Mour\~ao-Thiemann coherent state transform. We derive the expression of the 4d spinfoam vertex for Euclidean and for Lorentzian gravity in the holomorphic representation. The advantage of this representation rests on the fact that the variables used have a clear interpretation in terms of a classical intrinsic and extrinsic geometry of space. We show how the peakedness on the extrinsic geometry selects a single exponential of the Regge action in the semiclassical large-scale asymptotics of the spinfoam vertex.Comment: 10 pages, 1 figure, published versio
We give the definition of a minimal coupling of fermions and Yang Mills fields to the loop quantum gravity covariant dynamics. The coupling takes a surprisingly simple form. Here we only define the dynamics; physical implications are considered in a subsequent paper.
PACS 04.60.Pp -Loop quantum gravity, quantum geometry, spin foams PACS 04.60.Gw -Covariant and sum-over-histories quantization PACS 04.60.Nc -Lattice and discrete methods Abstract -We find a nontrivial regime of spinfoam quantum gravity that reproduces classical Einstein equations. This is the double scaling limit of small Immirzi parameter (gamma), large spins (j) with physical area (gamma times j) constant. In addition to quantum corrections in the Planck constant, we find new corrections in the Immirzi parameter due to the quantum discreteness of spacetime. The result is a strong evidence that the spinfoam covariant quantization of general relativity possesses the correct classical limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.